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3. Introduction

One of the most active field of research has been to analyse a general ap-
proach to Neutron Stars based on the Thomas-Fermi ultrarelativistic equa-
tions amply adopted in the study of superheavy nuclei. The aim is to have
a unified approach both to superheavy nuclei, up to atomic numbers of the
order of 105–106, and to what we have called Massive Nuclear Cores. These
Massive Nuclear Cores are

• characterized by atomic number of the order of 1057;
• composed by neutrons, protons and electrons in β–equilibrium;
• expected to be kept at nuclear density by self gravity.

The analysis of superheavy nuclei has historically represented a major field
of research, guided by Prof. V. Popov and Prof. W. Greiner and their schools.
This same problem was studied in the context of the relativistic Thomas-
Fermi equation also by R. Ruffini and L. Stella, already in the 80s. The recent
approach was started with the Ph.D. Thesis of M. Rotondo and has shown
the possibility to extrapolate this treatment of superheavy nuclei to the case
of Massive Nuclear Cores. The very unexpected result has been that also
around these massive cores there is the distinct possibility of having an elec-

tromagnetic field close to the critical value Ec = m2
e c3

eh̄ , although localized in a
very narrow shell of the order of the electron Compton wavelength (see Fig.
3.1, 3.2).
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Figure 3.1.: Number density of electrons, protons and neutrons.
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Figure 3.2.: Electric Field in units of the critical field.

The welcome result has been that all the analytic work developed by Prof.
Popov and the Russian school can be straightforwardly applied to the case of
massive cores, if the β–equilibrium condition is properly taken into account.
This has been the result obtained and published by Ruffini, Xue and Rotondo
already in 2007. Since then, a large variety of problems has emerged, which
have seen the direct participation at ICRANet of Prof. Greiner, Prof. Popov,
and Prof. ’t Hooft. The crucial issue to be debated is the stability of such
cores under the competing effects of self gravity and Coulomb repulsion. In
order to probe this stability, we have started a new approach to the problem
within the framework of general relativity. The object of the work by Patricelli
and Rueda is the generalization of the Tolman-Oppenheimer-Volkoff equa-
tion duly taking into account the elecrodynamical contribution. The major
scientific issue here is to have a unified approach solving the coupled sys-
tem of the general relativistic self gravitating electrodynamical problem with
the corresponding formulation of the Thomas-Fermi equation in the frame-
work of general relativity. Prof. ’t Hooft, in a series of lectures, has forcefully
expressed the opinion that necessarily, during the process of gravitational
collapse, it should occur a more extended distribution of the electromagnetic
field to the entire core of the star and not only confined to a thin shell. This
is a necessary condition in order to transmit the gravitational energy of the
collapse to the electrodynamical component of the field giving possibly rise
to large pair creation processes. This crucial idea is currently being pursued
by the application to this system of a classical work of Feynmann-Metropolis
and Teller, who considered in relativistic Thomas-Fermi the crucial role of
non-degeneracy.
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4. Brief description

4.1. On the gravitational and electrodynamical
stability of nuclear matter cores

Using an explicit analytic solution of the relativistic Thomas-Fermi equation
we show that a core of neutrons, protons and electrons in beta equilibrium
at nuclear densities has stable configurations both in the limit of superheavy
nuclei with mass number A ≈ 104–106 and in the limit of massive cores with
A ≈ (mPlanck/mn)3 ∼ 1057. These are globally neutral configurations which
have a maximum value of the electric field Emax = 0.95

√
αm2

πc3/eh̄ near the
core surface. This electric field, the value of which is below the critical value
for muon and pion production but well above the critical value Ec = m2

e c3/eh̄
for electron-positron pair creation, is stabilized against pair creation by the
degenerate electrons present in the configuration (Pauli blocking). On the one
extreme, superheavy nuclei are bound together by the strong interactions,
while on the other extreme we show that globally neutral massive cores can
be gravitationally bound. The value of the charge-to-mass ratios predicted at
the surface of massive cores coincides with the range of values expected in
astrophysical scenarios for Kerr-Newman black holes (see Appendix A.1).

4.2. Electrodynamics for Nuclear Matter in Bulk

A general approach to analyze the electrodynamics of nuclear matter in bulk
is presented using the relativistic Thomas-Fermi equation generalizing to the
case of N ' (mPlanck/mn)3 nucleons of mass mn the approach well tested in
very heavy nuclei (Z ' 106). Particular attention is given to implement the
condition of charge neutrality globally on the entire configuration, versus the
one usually adopted on a microscopic scale. As the limit N ' (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-
atively small tail of electrons persists leading to a significant electron density
outside the core. Within a region of 102 electron Compton wavelength near
the core surface electric fields close to the critical value for pair creation by
vacuum polarization effect develop. These results can have important conse-
quences on the understanding of physical process in neutron stars structures
as well as on the initial conditions leading to the process of gravitational col-
lapse to a black hole (see Appendix A.2).
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4. Brief description

4.3. On the Charge to Mass ratio of Neutron
Cores and Heavy Nuclei

We determine theoretically the relation between the total number of protons
Np and the mass number A (the charge to mass ratio) of nuclei and neutron
cores with the model recently proposed by Ruffini et al. (2007) and we com-
pare it with other Np versus A relations: the empirical one, related to the
Periodic Table, and the semi-empirical relation, obtained by minimizing the
Weizsäcker mass formula. We find that there is a very good agreement be-
tween all the relations for values of A typical of nuclei, with differences of
the order of per cent. Our relation and the semi-empirical one are in agree-
ment up to A ≈ 104 for higher values, we find that the two relations differ.
We interpret the different behavior of our theoretical relation as a result of
the penetration of electrons (initially confined in an external shell) inside the
core, that becomes more and more important by increasing A; these effects
are not taken into account in the semi-empirical mass-formula (see Appendix
A.3).

4.4. Supercritical fields on the surface of massive
nuclear cores: neutral core v.s. charged core

Based on the Thomas-Fermi approach, we describe and distinguish the elec-
tron distributions around extended nuclear cores: (i) in the case that cores are
neutral for electrons bound by protons inside cores and proton and electron
numbers are the same; (ii) in the case that super charged cores are bare, elec-
trons (positrons) produced by vacuum polarization are bound by (fly into)
cores (infinity) (see Appendix A.4).

4.5. The extended nuclear matter model with
smooth transition surface

The existence of electric fields close to their critical value Ec = m2
e c3

eh̄ has been
proved for massive cores of 107 up to 1057 nucleons using a distribution of
constant nuclear density and a sharp step function at its boundary. We ex-
plore the modifications of this effect by considering a smoother density pro-
file with a proton distribution fulfilling a Wood-Saxon dependence. The oc-
currence of a critical field has been confirmed. We discuss how the location
of the maximum of the electric field as well as its magnitude is modified by
the smoother distribution (see Appendix A.5).
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4.6. Electron-positron pairs production in an electric potential of massive
cores

4.6. Electron-positron pairs production in an
electric potential of massive cores

Classical and semi-classical energy states of relativistic electrons bounded by
a massive and charged core with the charge-mass-radio Q/M and macro-
scopic radius Rc are discussed. We show that the energies of semi-classical
(bound) states can be much smaller than the negative electron mass-energy
(−mc2), and energy-level crossing to negative energy continuum occurs. Elec-
tron − positron pair production takes place by quantum tunneling, if these
bound states are not occupied. Electrons fill into these bound states and
positrons go to infinity. We explicitly calculate the rate of pair-production,
and compare it with the rates of electron-positron production by the Sauter-
Euler-Heisenberg-Schwinger in a constant electric field. In addition, the pair-
production rate for the electro-gravitational balance ratio Q/M = 10−19 is
much larger than the pair-production rate due to the Hawking processes. We
point out that in neutral cores with equal proton and electron numbers, the
configuration of relativistic electrons in these semi-classical (bound) states
should be stabilized by photon emissions (see Appendix B).

4.7. On the General Relativistic Thomas-Fermi
Model for Neutron Star Cores

The connection between the generalized Tolman-Oppenheimer-Volkoff (TOV)
equation for charged fluids and the Thomas-Fermi approach for atoms is
used to formulate a general relativistic model for neutron star cores com-
posed by degenerate electrons, protons and neutrons. We show that the TOV
equation can be reduced to a “conservation” equation for the general rela-
tivistic Fermi energies of the particles. In fact, by assuming the Thomas-Fermi
equilibrium condition for the electron gas (EF

e = 0) and the β−equilibrium
we find that the Fermi energy of each component of the gas is constant on the
whole configuration. We demonstrate analytically that the system does not
satisfy the local charge neutrality, which is generally assumed, but instead
it acquires a small net charge. Following Ruffini et al. (2007) we show that
in order to neutralize the system a critical electric field on the core surface
should exist( see Appendix C).

4.8. The Crust of Neutron Stars and its
connection with the Fireshell Model of GRBs

We study the characteristics of the Outer Crust of Neutron Stars, that is the re-
gion of Neutron Stars characterized by a mass density less than the “neutron
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4. Brief description

drip” density and composed by White Dwarf - like material (fully ionized
nuclei and free electrons). In particular, we calculate its mass and its thick-
ness (Mcrust and ∆Rcrust respectively) with a general relativistic model, find-
ing that the Outer Crust is smaller in mass and in radial extension for stars
with more compact Cores. We also propose a correlation with the Fireshell
Model of GRBs, that assumes that GRBs originates from the gravitational col-
lapse to a black hole. One of the parameters used in this model is the baryon
loading B of the electron - positron plasma, related to the mass of the bary-
onic remnant of the star progenitor MB. We propose that B originates from
the Crust of Neutron Stars and we compare Mcrust with the values of MB
used to reproduce the observed data, finding that they are compatible (see
Appendix D).

4.9. The Role of Thomas Fermi approach in
Neutron Star Matter

The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-
sented and discussed with special attention to solutions globally neutral and
not fulfilling the traditional condition of local charge neutrality. A new stable
and energetically favorable configuration is found. This new solution can be
of relevance in understanding unsolved issues of the gravitational collapse
processes and their energetics (see Appendix E).
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is presented using the relativistic Thomas-Fermi equation generalizing to the
case of N ' (mPlanck/mn)3 nucleons of mass mn the approach well tested in
very heavy nuclei (Z ' 106). Particular attention is given to implement the
condition of charge neutrality globally on the entire configuration, versus the
one usually adopted on a microscopic scale. As the limit N ' (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-
atively small tail of electrons persists leading to a significant electron density
outside the core. Within a region of 102 electron Compton wavelength near the
core surface electric fields close to the critical value for pair creation by vacuum
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we show that a core of neutrons, protons and electrons in beta equilibrium
at nuclear densities has stable configurations both in the limit of superheavy
nuclei with mass number A ≈ 104–106 and in the limit of massive cores with
A ≈ (mPlanck/mn)3 ∼ 1057. These are globally neutral configurations which
have a maximum value of the electric field Emax = 0.95

√
αm2

πc3/eh̄ near the
core surface. This electric field, the value of which is below the critical value
for muon and pion production but well above the critical value Ec = m2

e c3/eh̄
for electron-positron pair creation, is stabilized against pair creation by the de-
generate electrons present in the configuration (Pauli blocking). On the one ex-
treme, superheavy nuclei are bound together by the strong interactions, while
on the other extreme we show that globally neutral massive cores can be grav-
itationally bound. The value of the charge-to-mass ratios predicted at the sur-
face of massive cores coincides with the range of values expected in astrophys-
ical scenarios for Kerr-Newman black holes.

3. R. Ruffini, M. Rotondo and S.-S. Xue, “Neutral nuclear core vs super
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Based on the Thomas-Fermi approach, we describe and distinguish the elec-
tron distributions around extended nuclear cores: (i) in the case that cores are
neutral for electrons bound by protons inside cores and proton and electron
numbers are the same; (ii) in the case that super charged cores are bare, elec-
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and energy-level crossing to negative energy continuum occurs. Electron-
positron pair production takes place by quantum tunneling, if these bound
states are not occupied. Electrons fill into these bound states and positrons go
to infinity. We explicitly calculate the rate of pair-production, and compare it
with the rates of electron-positron production by the Sauter-Euler-Heisenberg-
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mass formula. We find that there is a very good agreement between all the
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cent. Our relation and the semi-empirical one are in agreement up to A ≈
104 for higher values, we find that the two relations differ. We interpret the
different behavior of our theoretical relation as a result of the penetration of
electrons (initially confined in an external shell) inside the core, that becomes
more and more important by increasing A; these effects are not taken into
account in the semi-empirical mass-formula.
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as well as well tested analytic procedures developed in the study of heavy
ions, we confirm the existence of an electric field close to the critical value
Ec = m2

e c3/eh̄ in a shell ∆R ≈ 104h̄/mπc near the core surface. For a core of
≈ 10 Km the difference in binding energy reaches 1049 ergs. These results can
be of interest for the understanding of very heavy nuclei as well as physics of
neutron stars, their formation processes and further gravitational collapse to a
black hole.

7. B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini, “The Electro-
dynamics of the Core and the Crust components in Neutron Stars”, AIP
Conference Proceedings, Vol. 1059 (2008), pp. 68-71.

We study the possibility of having a strong electric field (E) in Neutron Stars.
We consider a system composed by a core of degenerate relativistic electrons,
protons and neutrons, surrounded by an oppositely charged leptonic compo-
nent and show that at the core surface it is possible to have values of E of the
order of the critical value for electron-positron pair creation, depending on the
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The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-
sented and discussed with special attention to solutions globally neutral and
not fulfilling the traditional condition of local charge neutrality. A new sta-
ble and energetically favorable configuration is found. This new solution can
be of relevance in understanding unsolved issues of the gravitational collapse
processes and their energetics.
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A. Solution to Thomas-Fermi
Equation for large nuclear cores

A.1. On the gravitational and electrodynamical
stability of nuclear matter cores

Having proposed a relativistic Thomas-Fermi model for a unified treatment
of globally neutral systems ranging from atoms with superheavy nuclei to su-
permassive cores at nuclear densities (1), we were naturally interested in the
proposal by Jes Madsen (2) of a relation between the maximum charge and
radius of any static, spherically symmetric maximally charged object ranging
from superheavy nuclei to neutron stars and black holes, based on the rela-
tivistic Thomas-Fermi model. At present the observations of neutron stars in
millisecond binary pulsars (3; 4) lead to estimates of their masses approach-
ing but not exceeding the absolute upper limit for the mass of a neutron star
(5), and which are sufficiently close to that limit to exclude all known equa-
tions of state (EOS) (6). The problem of the emission of a remnant during
the gravitational collapse which leads to the formation of a neutron star is
still unresolved (7). Equally challenging is the identification of the electrody-
namical process around neutron stars taking place during the gravitational
collapse phase which generates the copious e+e− electron-positron pair pro-
duction powering Gamma-Ray Bursts (8). The fundamental understanding
reachable by a rigorous analysis of the relativistic Thomas-Fermi model, im-
portant in its own right, can therefore identify new physical effects to be ac-
counted for using a more complete EOS and consequently overcome these
difficulties and address the new challenges.

We therefore present here some results complementary to those of Madsen
in addition to the ones we have already obtained numerically (1), now made
possible by a particular explicit analytic solution of the Thomas-Fermi equa-
tions, a solution with boundary conditions which are physically quite differ-
ent from those used by Madsen. This analytic solution describes a system
of neutrons, protons and electrons in beta equilibrium at nuclear densities
having a mass number A ≈ 104–106 in the limit of atoms with superheavy
nuclei and A ≈ (mPlanck/mn)3 ∼ 1057 in the limit of massive cores. The
former case generalizes the classic results of Greiner (9; 10; 11) and Popov
(12; 13; 14), while in the latter case the analytic expression agrees with previ-
ous numerical solutions (1). In both cases a supercritical field exists in a shell
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A. Solution to Thomas-Fermi Equation for large nuclear cores

of thickness ≈ 102h̄/mπc at the core surface, and a charged lepton-baryonic
core is surrounded by an oppositely charged leptonic component. Such mas-
sive cores appear to be stable both with respect to gravity and to Coulomb
repulsion of the proton component. Thus while superheavy nuclei for small
A are stabilized by the effect of strong interactions at least in limited charge
range (9; 10; 11; 12; 13; 14), the gravitational interaction alone appears to be
sufficient for the stability of the massive cores. A direct comparison is made
below between our globally neutral solutions and the charged ones recently
discussed by Madsen.

The analytic solution representing a core of degenerate neutrons, protons
and electrons is obtained by assuming Np protons are distributed at a con-
stant density np within a radius

Rc = ∆
h̄

mπc
N1/3

p , (A.1.1)

where mπ is the pion mass and ∆ is a parameter such that the condition ∆ ≈ 1
(∆ < 1), when applied to ordinary nuclei, corresponds to nuclear (supranu-
clear) densities. The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[
np(r)− ne(r)

]
(A.1.2)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and V(0) = finite. The density of the electrons of mass me and
charge -e is determined by the Fermi energy condition

EF
e = [(PF

e c)2 + m2
e c4]1/2 −mec2 − eV(r) = 0 , (A.1.3)

or

ne(r) =
1

3π2h̄3c3

[
e2V2(r) + 2mec2eV(r)

]3/2
. (A.1.4)

By introducing the dimensionless quantities x = r/[h̄/mπc], xc = Rc/[h̄/mπc]
and χ/r = eV(r)/ch̄, the relativistic Thomas-Fermi equation takes the form

1
3x

d2χ(x)
dx2 = − α

∆3 θ(xc − x) +
4α

9π

[
χ2(x)

x2 + 2
me

mπ

χ

x

]3/2

(A.1.5)

where as usual α = e2/(h̄c) and χ(0) = 0, χ(∞) = 0. In the current literature
phenomenological expressions have been assumed both for the radius Rc ≈
1.5× 10−13A1/3 cm of the core as a function of the mass number A, and for
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the relation between A and Np (11; 14; 15)

Np '
A
2

, (A.1.6)

or

Np '
[

2
A

+
3

200
1

A1/3

]−1

. (A.1.7)

Instead of these phenomenological expressions, Eq. (A.4.1) and the condition
of beta equilibrium have been adopted in our treatment. The neutron density
nn(r) is determined by the Fermi energy condition on their Fermi momentum
PF

n imposed by beta equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 −mnc2

= [(PF
p c)2 + m2

pc4]1/2 −mpc2 + eV(r) (A.1.8)

which in turn is related to the proton and electron densities by Eqs. (A.4.7),
(A.1.4) and (E.0.12).

These equations have been integrated numerically (1), and a new gen-
eralized relation between A and Np has been derived for any value of A
which agrees remarkably well with the phenomenological relations given by
Eqs. (E.0.7) and (A.1.7) in the limit of A < 300 (see Fig. A.1).

The ultrarelativistic case for massive cores is the relevant one for studying
the onset of gravitational collapse. In this limit, as in the case of heavy nu-
clei (14), the relativistic Thomas-Fermi equation admits an analytic solution.
Introducing the new function φ defined by

φ = ∆
[

4
9π

]1/3 χ

x
,

and the new variables x̂ = (12/π)1/6√α∆−1x, ξ = x̂ − x̂c, where x̂c =
(12/π)1/6√α∆−1xc, then Eq. (5) becomes

d2φ̂(ξ)
dξ2 = −θ(−ξ) + φ̂(ξ)3 , (A.1.9)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c � 0 (at the massive core center) and φ̂(ξ) → 0 as ξ → ∞. The
function φ̂ and its first derivative φ̂′ must be continuous at the surface ξ = 0
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Figure A.1.: Our A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Eq. (E.0.7) (dashed line) and Eq. (A.1.7) (dotted line).

of the massive core. Eq. (E.0.15) admits an exact solution

φ̂(ξ) =


1− 3

[
1 + 2−1/2 sinh(a−

√
3ξ)
]−1

, ξ < 0,
√

2
(ξ + b)

, ξ > 0 ,

where the integration constants a and b have the values a = arcsinh(11
√

2) =
3.439, b = (4/3)

√
2 = 1.886. We can next evaluate the Coulomb potential

energy function

eV(ξ) =
(

9π

4

)1/3 1
∆

mπc2φ̂(ξ) , (A.1.10)

and by differentiation, the electric field

E(ξ) =
(

3π

4

)1/6 1
∆2

m2
πc4

(h̄c)3/2 φ̂′(ξ). (A.1.11)
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Figure A.2.: The electron Coulomb potential energy −eV, in units of pion
mass mπ is plotted as a function of the radial coordinate ξ = x̂ − x̂c, for
selected values of the density parameter ∆.

Details are given in Figs. E.5 and A.3.
Next we can estimate two crucial quantities: the Coulomb potential at the

center of the configuration and the electric field at the surface of the core

eV(0) ≈
(

9π

4

)1/3 1
∆

mπc2 , (A.1.12)

Emax ≈ 0.95
√

α
1

∆2
m2

πc3

eh̄
. (A.1.13)

Most remarkably these two quantities are functions only of the pion mass mπ,
the density parameter ∆ and of course the fine constant structure α and their
formulas apply over the entire range from superheavy nuclei with Np ≤ 103

all the way to massive cores with Np ≈ (mPlanck/mn)3.
This critical field Emax is totally analogous to the one considered by Heisen-

berg and Euler in the context of elementary particles differing only by the
replacement of the pion mass by the electron mass (16). Having established
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Figure A.3.: The electric field, in units of the critical field Ec, is plotted as a
function of the radial coordinate ξ for ∆=2.

the validity of the above equations both for superheavy nuclei and for mas-
sive cores, we now outline some fundamental differences between these two
systems. We find the charge-to-mass ratio

Q√
GM

≈ EmaxR2
c√

Gmn A
≈
(

mPlanck
mn

)(
1

Np

)1/3 Np

A
(A.1.14)

for the effective charge Q at the core surface and the mass M, where mn is the
nucleon mass. We see immediately that for superheavy nuclei with Np < 103

and Np/A = 1/2, this charge-to-mass ratio for the nucleus is always larger
than 1/20 of the Planck mass ratio mPlanck/mn ∼ 1018. This means that the
gravitational interaction can be safely neglected and the strong interactions
must be properly taken into account to keep the nucleus confined within a
core radius given by Eq. (A.4.1) (17). Instead for massive cores where Np ≈
(mPlanck/mn)3, the ratio Q/

√
GM given by Eq. (A.1.14) is simply

Q√
GM

≈
Np

A
(A.1.15)
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which is of the order of and smaller than 1/10. Thus the massive core is
gravitationally stable and bound. This is a very significant conceptual sim-
plification of the problem: it is possible to formulate a consistent model of
massive cores only in terms of gravitational, electromagnetic and weak inter-
actions and quantum statistics. We can also see the same constraint on the
gravitational stability of neutron cores from a different point of view: from
Eq. (A.1.12) it is clear that the repulsive Coulomb potential of the proton can
indeed be balanced by the gravitational potential of the massive core since
for A ≈ (mPlanck/mn)3, the gravitational potential can be as large as 0.1mpc2.
This is consistent with the existence of gravitationally bound massive cores
and supercritical fields with values given by Eq. (A.1.11); see also Fig. (3).
Thus all the arguments often quoted in the literature and in textbooks con-
cerning limits on the electric fields of an astrophysical system based on a free
test particle approximation given by equations like

Emax ≈
me

e
mnc3

h̄
mn

mPlanck
(A.1.16)

Q√
GM

≈
√

G
me

e
=

1√
α

me

mPlanck
, (A.1.17)

appear to be inapplicable when the collective effects of the quantum statistics
are present and properly taken into account as in the relativistic Thomas-
Fermi model, which instead leads to the corresponding Eqs. (A.1.13), (A.1.14).

We now compare in Fig. A.4 our globally neutral solutions with the charged
ones considered by Madsen (see also (18)). The solutions for the electron dis-
tributions inside the core are practically identical and the only slightly differ-
ence occurs in the electron distribution outside the core. In the Madsen case,
it is confined to a region within ≈ 102 pion Compton wavelengths of the core
surface, while in the globally neutral case it extends out to infinity, although
it decays sharply with the distance. Madsen correctly points out that the
result for massive cores closely resembles the parameters used by Damour
and Ruffini within the general relativistic treatment of charged black holes
described by the Kerr-Newman solution (19). Already in 1975 it was recog-
nized that such a result “leads to a most simple model for the explanation of
the recently discovered γ-rays bursts” (19). These results are confirmed by
our treatment and by Eqs. (A.1.13), (A.1.14).

From our analysis we can infer three general conclusions. 1) By imposing
the condition of beta decay equilibrium, in addition to the solution of the rel-
ativistic Thomas-Fermi equation, we obtain from first principles a relation be-
tween the mass number A and the proton number Np in the entire mass range
from superheavy nuclei with mass number A ≈ 104–106 up to massive cores
with A ≈ (mPlanck/mn)3 ∼ 1057. This relation reproduces accurately the phe-
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Figure A.4.: Electron number density in a neutral core (solid line) and in a
charged one (dotted line) as a function of the pion Compton wavelength for
∆ ≈ 1.

nomenological relation adopted for superheavy nuclei (17). 2) The collective
effects of the ground state due to the relativistic quantum statistics reflected
in any solution of the relativistic Thomas-Fermi equation clearly allow sta-
ble configurations with electric fields much larger than the ones suggested
by test particle approximations. This has clear conceptual implications in as-
trophysics. 3) The existence of two ‘island’ of stability. The explicit solution
for the electric potential of the relativistic Thomas-Fermi equation for super-
heavy nuclei implies the existence of stable configurations, up to some critical
value of Np (9; 10; 11; 12; 13; 14), once the confining effects of strong interac-
tions are taken into account. In the opposite case of massive cores we have
uncovered the theoretical appealing possibility that stable configurations ex-
ist based solely on gravitational, electromagnetic and weak interactions and
relativistic quantum statistics. This novel result is interesting in its own right
and opens up a whole new scenario for the study of neutron star configura-
tions close to their critical mass and the subsequent approach to the process of
gravitational collapse to a Kerr-Newman black hole (20). It also offers an un-
precedented arena to study self-gravitating configurations in the framework
of tested field theories in their complete range of validity . This will also foster
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the understanding of the vacuum polarization during the formation process
of a black hole (19) and of the thermalisation of the electron-positron plasma
created there (21).

We finally outline some consequences of our results for neutron stars. In
the classic work of Oppenheimer and collaborators (22), neutron stars are
described by a Schwarzchild spacetime whose source is composed of only
neutrons and find Mcrit ≈ 0.7M�. Harrison and Wheeler (23) introduced
an important step forward by considering the presence of neutrons, protons
and electrons in beta equilibrium, but imposing local charge neutrality. These
considerations were further extended by evaluating the neutron, proton, and
electron core melting density at 3× 1014 gcm−3 (24). These last two studies
lead to identify two sharply separated components in a neutron star across
the above melting density : a core composed of neutrons, protons and elec-
trons with a pressure mainly due to the neutrons and a crust component con-
sisting of white-dwarf-like material with a pressure due mainly to the elec-
trons (25; 26).

The present work clearly applies only to the inner core of the neutron star
and our considerations for a core of constant density apply as well to the
case of neutron star cores where the density monotonically increases from
the surface to the center. We have shown elsewhere (27) by explicit com-
putation that such a monotonic density increase leads to an enhancement of
the electric field at the core surface. Moreover these electrodynamical effects
are expected to be especially important for configurations close to the criti-
cal value of the mass where the process of gravitational collapse takes place.
Such conditions occur at supra-nuclear densities and correspond to values
of ∆ ≈ 0.4− 1. The electromagnetic structure considered above represents
a conceptually new component in neutron star physics, implying the need
to use a Reissner-Nordström and possibly a Kerr-Newman geometry for the
description of the inner core instead of a Schwarzchild geometry, while still
maintaining the overall charge neutrality of the star. This may very well affect
the neutron star mass-radius relation and the value of Mcrit (28). These con-
siderations clearly also modify the description of the gravitational collapse
of the baryonic component of the massive core, triggered when protons and
neutrons become ultrarelativistic as the mass nears the critical value. This
situation characterizes the initial value problem for a gravitational collapse
which leads to an electromagnetic Kerr-Newman black hole.

A.2. Electrodynamics for Nuclear Matter in Bulk

It is well know that the Thomas-Fermi equation is the exact theory for atoms,
molecules and solids as Z → ∞ (29). We show in this letter that the relativis-
tic Thomas-Fermi theory developed for the study of atoms for heavy nuclei
with Z ' 106 (9), (10), (11), (12), (13),(15), (18), (30), (31), (32), (33) gives im-
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portant basic new information on the study of nuclear matter in bulk in the
limit of N ' (mPlanck/mn)3 nucleons of mass mn and on its electrodynamic
properties. The analysis of nuclear matter bulk in neutron stars composed of
degenerate gas of neutrons, protons and electrons, has traditionally been ap-
proached by implementing microscopically the charge neutrality condition
by requiring the electron density ne(x) to coincide with the proton density
np(x),

ne(x) = np(x). (A.2.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.2.1) will be necessarily violated. We
are going to show in this letter that they will develop electric fields close to
the critical value Ec introduced by Sauter (34), Heisenberg and Euler (16), and
by Schwinger (35)

Ec =
m2c3

eh̄
. (A.2.2)

Special attention for the existence of critical electric fields and the possible
condition for electron-positron (e+e−) pair creation out of the vacuum in the
case of heavy bare nuclei, with the atomic number Z ≥ 173, has been given by
Pomeranchuk and Smorodinsky (30), Gershtein and Zel’dovich (31), Popov
(12), Popov and Zel’dovich (13), Greenberg and Greiner (10), Muller, Peitz,
Rafelski and Greiner (11). They analyzed the specific pair creation process of
an electron-positron pair around both a point-like and extended bare nucleus
by direct integration of Dirac equation. These considerations have been ex-
trapolated to much heavier nuclei Z � 1600, implying the creation of a large
number of e+e− pairs, by using a statistical approach based on the relativistic
Thomas-Fermi equation by Muller and Rafelski (32), Migdal, Voskresenskii
and Popov (33). Using substantially the same statistical approach based on
the relativistic Thomas-Fermi equation, Ferreirinho et al. (15), Ruffini and
Stella (18) have analyzed the electron densities around an extended nucleus
in a neutral atom all the way up to Z ' 6000. They have shown the effect
of penetration of the electron orbitals well inside the nucleus, leading to a
screening of the nuclei positive charge and to the concept of an “effective”
nuclear charge distribution. All the above works assumed for the radius of
the extended nucleus the semi-empirical formulae (17),

Rc ≈ r0A1/3, r0 = 1.2 · 10−13cm, (A.2.3)
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where the mass number A = Nn + Np, Nn and Np are the neutron and proton
numbers. The approximate relation between A and the atomic number Z =
Np,

Z ' A
2

, (A.2.4)

was adopted in Refs. (32; 33), or the empirical formulae

Z ' [
2
A

+
3

200
1

A1/3 ]−1, (A.2.5)

was adopted in Refs. (15; 18).

The aim of this letter is to outline an alternative approach of the description
of nuclear matter in bulk: it generalizes, to the case of N ' (mPlanck/mn)3

nucleons, the above treatments, already developed and tested for the study
of heavy nuclei. This more general approach differs in many aspects from the
ones in the current literature and recovers, in the limiting case of A smaller
than 106, the above treatments. We shall look for a solution implementing the
condition of overall charge neutrality of the star as given by

Ne = Np, (A.2.6)

which significantly modifies Eq. (A.2.1), since now Ne(Np) is the total number
of electrons (protons) of the equilibrium configuration. Here we present only
a simplified prototype of this approach. We outline the essential relative role
of the four fundamental interactions present in the neutron star physics: the
gravitational, weak, strong and electromagnetic interactions. In addition, we
also implement the fundamental role of Fermi-Dirac statistics and the phase
space blocking due to the Pauli principle in the degenerate configuration.
The new results essentially depend from the coordinated action of the five
above theoretical components and cannot be obtained if any one of them is
neglected. Let us first recall the role of gravity. In the case of neutron stars,
unlike in the case of nuclei where its effects can be neglected, gravitation
has the fundamental role of defining the basic parameters of the equilibrium
configuration. As pointed out by Gamow (36), at a Newtonian level and by
Oppenheimer and Volkoff (37) in general relativity, configurations of equilib-
rium exist at approximately one solar mass and at an average density around
the nuclear density. This result is obtainable considering only the gravita-
tional interaction of a system of Fermi degenerate self-gravitating neutrons,
neglecting all other particles and interactions. It can be formulated within a
Thomas-Fermi self-gravitating model (see e.g. (38)). In the present case of
our simplified prototype model directed at evidencing new electrodynamic
properties, the role of gravity is simply taken into account by considering, in
line with the generalization of the above results, a mass-radius relation for
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the baryonic core

RNS = Rc ≈
h̄

mπc
mPlanck

mn
. (A.2.7)

This formula generalizes the one given by Eq. (A.2.3) extending its validity
to N ≈ (mPlanck/mn)3, leading to a baryonic core radius Rc ≈ 10km. We also
recall that a more detailed analysis of nuclear matter in bulk in neutron stars
( see e.g. Bethe et al. (39) and Cameron (40) ) shows that at mass densities
larger than the ”melting” density of

ρc = 4.34 · 1013g/cm3, (A.2.8)

all nuclei disappear. In the description of nuclear matter in bulk we have to
consider then the three Fermi degenerate gas of neutrons, protons and elec-
trons. In turn this naturally leads to consider the role of strong and weak
interactions among the nucleons. In the nucleus, the role of the strong and
weak interaction, with a short range of one Fermi, is to bind the nucleons,
with a binding energy of 8 MeV, in order to balance the Coulomb repulsion
of the protons. In the neutron star case we have seen that the neutrons con-
finement is due to gravity. We still assume that an essential role of the strong
interactions is to balance the effective Coulomb repulsion due to the protons,
partly screened by the electrons distribution inside the neutron star core. We
shall verify, for self-consistency, the validity of this assumption on the final
equilibrium solution we are going to obtain. We now turn to the essential
weak interaction role in establishing the relative balance between neutrons,
protons and electrons via the direct and inverse β-decay

p + e −→ n + νe, (A.2.9)
n −→ p + e + ν̄e. (A.2.10)

Since neutrinos escape from the star and the Fermi energy of the electrons is
null, as we will show below, the only non-vanishing terms in the equilibrium
condition given by the weak interactions are:

[(PF
n c)2 + M2

nc4]1/2 −Mnc2 = [(PF
p c)2 + M2

pc4]1/2 −Mpc2 + |e|Vp
coul,(A.2.11)

where PF
n and PF

p are respectively, the neutron and proton Fermi momenta,
and Vp

coul is the Coulomb potential of protons. At this point, having fixed all
these physical constraints, the main task is to find the electrons distributions
fulfilling in addition to the Dirac-Fermi statistics also the Maxwell equations
for the electrostatic. The condition of equilibrium of the Fermi degenerate
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electrons implies the null value of the Fermi energy:

[(PF
e c)2 + m2c4]1/2 −mc2 + eVcoul(r) = 0, (A.2.12)

where PF
e is the electron Fermi momentum and Vcoul(r) the Coulomb poten-

tial. In line with the procedure already followed for the heavy atoms (15),(18)
we here adopt the relativistic Thomas-Fermi Equation:

1
x

d2χ(x)
dx2 = −4πα

θ(x− xc)−
1

3π2

[(
χ(x)

x
+ β

)2

− β2

]3/2
 , (A.2.13)

where α = e2/(h̄c), θ(x − xc) represents the normalized proton density dis-
tribution, the variables x and χ are related to the radial coordinate and the
electron Coulomb potential Vcoul by

x =
r

Rc

(
3Np

4π

)1/3

; eVcoul(r) ≡ χ(r)
r

, (A.2.14)

and the constants xc(r = Rc) and β are respectively

xc ≡
(

3Np

4π

)1/3

; β ≡ mcRc

h̄

(
4π

3Np

)1/3

. (A.2.15)

The solution has the boundary conditions

χ(0) = 0; χ(∞) = 0, (A.2.16)

with the continuity of the function χ and its first derivative χ′ at the boundary
of the core Rc. The crucial point is the determination of the eigenvalue of the
first derivative at the center

χ′(0) = const., (A.2.17)

which has to be determined by fulfilling the above boundary conditions (A.2.16)
and constraints given by Eq. (E.0.14) and Eq. (A.2.6). The difficulty of the inte-
gration of the Thomas-Fermi Equations is certainly one of the most celebrated
chapters in theoretical physics and mathematical physics, still challenging a
proof of the existence and uniqueness of the solution and strenuously avoid-
ing the occurrence of exact analytic solutions. We recall after the original
papers of Thomas (41) and Fermi (42), the works of Scorza Dragoni (43),
Sommerfeld (44), Miranda (45) all the way to the many hundredth papers
reviewed in the classical articles of Lieb and Simon (29), Lieb (46) and Spruch
(47). The situation here is more difficult since we are working on the special
relativistic generalization of the Thomas-Fermi Equation. Also in this case,
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therefore, we have to proceed by numerical integration. The difficulty of this
numerical task is further enhanced by a consistency check in order to fulfill
all different constraints. It is so that we start the computations by assuming
a total number of protons and a value of the core radius Rc. We integrate the
Thomas-Fermi Equation and we determine the number of neutrons from the
Eq. (E.0.14). We iterate the procedure until a value of A is reached consistent
with our choice of the core radius. The paramount difficulty of the prob-
lem is the numerical determination of the eigenvalue in Eq. (A.2.17) which
already for A ≈ 104 had presented remarkable numerical difficulties (15).
In the present context we have been faced for a few months by an apparently
unsurmountable numerical task: the determination of the eigenvalue seemed
to necessitate a significant number of decimals in the first derivative (A.2.17)
comparable to the number of the electrons in the problem! We shall discuss
elsewhere the way we overcame the difficulty by splitting the problem on
the ground of the physical interpretation of the solution (48). The solution is
given in Fig. (A.5) and Fig. (E.4).
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Figure A.5.: The solution χ of the relativistic Thomas-Fermi Equation for A =
1057 and core radius Rc = 10km, is plotted as a function of radial coordinate.
The left red line corresponds to the internal solution and it is plotted as a
function of radial coordinate in unit of Rc in logarithmic scale. The right
blue line corresponds to the solution external to the core and it is plotted
as function of the distance ∆r from the surface in the logarithmic scale in
centimeter.
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Figure A.6.: The same as Fig. (A.5): enlargement around the core radius Rc
showing explicitly the continuity of function χ and its derivative χ′ from the
internal to the external solution.

A relevant quantity for exploring the physical significance of the solution
is given by the number of electrons within a given radius r:

Ne(r) =
∫ r

0
4π(r′)2ne(r′)dr′. (A.2.18)

This allows to determine, for selected values of the A parameter, the distri-
bution of the electrons within and outside the core and follow the progres-
sive penetration of the electrons in the core at increasing values of A [ see
Fig. (A.7)]. We can then evaluate, generalizing the results in (15), (18) , the net
charge inside the core

Nnet = Np − Ne(Rc) < Np, (A.2.19)

and consequently determine of the electric field at the core surface, as well
as within and outside the core [see Fig. (E.5)] and evaluate as well the Fermi
degenerate electron distribution outside the core [see Fig. (A.9)]. It is inter-
esting to explore the solution of the problem under the same conditions and
constraints imposed by the fundamental interactions and the quantum statis-
tics and imposing instead of Eq. (A.2.1) the corresponding Eq. (A.2.6). Indeed
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a solution exist and is much simpler

nn(x) = np(x) = ne(x) = 0, χ = 0. (A.2.20)
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Figure A.7.: The electron number (A.2.18) in the unit of the total proton num-
ber Np, for selected values of A, is given as function of radial distance in
the unit of the core radius Rc, again in logarithmic scale. It is clear how
by increasing the value of A the penetration of electrons inside the core in-
creases. The detail shown in Fig. (E.5) and Fig. (A.9) demonstrates how for
N ' (mPlanck/mn)3 a relatively small tail of electron outside the core exists
and generates on the baryonic core surface an electric field close to the critical
value given in . A significant electron density outside the core is found.

Before concluding as we announce we like to check on the theoretical con-
sistency of the solution. We obtain an overall neutral configuration for the
nuclear matter in bulk, with a positively charged baryonic core with

Nnet = 0.92
(

m
mπ

)2( e
mn
√

G

)2(1
α

)2

, (A.2.21)

and an electric field on the baryonic core surface (see Fig. (E.5) )

E
Ec

= 0.92. (A.2.22)
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increasing the density of the star the field approaches the critical field.

The corresponding Coulomb repulsive energy per nucleon is given by

Umax
coul =

1
2α

(
m

mπ

)3

mc2 ≈ 1.78 · 10−6(MeV), (A.2.23)

well below the nucleon binding energy per nucleon. It is also important to
verify that this charge core is gravitationally stable. We have in fact

Q√
GM

= α−1/2
(

m
mπ

)2

≈ 1.56 · 10−4. (A.2.24)

The electric field of the baryonic core is screened to infinity by an electron
distribution given in Fig. (A.9). As usual any new solution of Thomas-Fermi
systems has relevance and finds its justification in the theoretical physics
and mathematical physics domain. We expect that as in the other solutions
previously obtained in the literature of the relativistic Thomas-Fermi equa-
tions also this one we present in this letter will find important applications
in physics and astrophysics. There are a variety of new effects that such a
generalized approach naturally leads to: (1) the mass-radius relation of neu-
tron star may be affected; (2) the electrodynamic aspects of neutron stars and
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Figure A.9.: The density of electrons for A = 1057 in the region outside the
core; both scale are logarithmically.

pulsars will be different; (3) we expect also important consequence in the ini-
tial conditions in the physics of gravitational collapse of the baryonic core as
soon as the critical mass for gravitational collapse to a black hole is reached.
The consequent collapse to a black hole will have very different energetics
properties.

A.3. On the Charge to Mass Ratio of Neutron
Cores and Heavy Nuclei

Introduction. It is well known that stable nuclei are located, in the Nn-Np plane
(where Nn and Np are the total number of neutrons and protons respectively),
in a region that, for small values of Np, is almost a line well described by the
relation Nn = Np.
In the past, several efforts have been made to explain theoretically this prop-
erty, for example with the liquid drop model of atoms, that is based on two
properties common to all nuclei: their mass densities and their binding ener-
gies for nucleons are almost indipendent from the mass number A = Nn + Np
(17). This model takes into account the strong nuclear force and the Coulom-
bian repulsion between protons and explains different properties of nuclei,
for example the relation between Np and A (the charge to mass ratio).
In this work (66) we derive theoretically the charge to mass ratio of nuclei
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and extend it to neutron cores (characterized by higher values of A) with
the model of Ruffini et al. (1). We consider systems composed of degener-
ate neutrons, protons and electrons and we use the relativistic Thomas-Fermi
equation and the equation of β-equilibrium to determine the number density
and the total number of these particles, from which we obtain the relation
between Np and A.

The theoretical model. Following the work of Ruffini et al. (1), we describe
nuclei and neutron cores as spherically symmetric systems composed of de-
generate protons, electrons and neutrons and impose the condition of global
charge neutrality.
We assume that the proton’s number density np(r) is constant inside the core
(r ≤ RC) and vanishes outside the core (r > RC):

np(r) =

(
3Np

4πR3
C

)
θ(RC − r), (A.3.1)

where Np is the total number of protons and RC is the core-radius, parametrized
as:

RC = ∆
h̄

mπc
N1/3

p . (A.3.2)

We choose ∆ in order to have ρ ∼ ρN, where ρ and ρN are the mass density of
the system and the nuclear density respectively (ρN = 2.314 · 1014g cm−3).
The electron number density ne(r) is given by:

ne(r) =
1

3π2h̄3

[
pF

e (r)
]3

, (A.3.3)

where pF
e (r) is the electron Fermi momentum. It can be calculated from the

condition of equilibrium of Fermi degenerate electrons, that implies the null
value of their Fermi energy εF

e (r):

εF
e (r) =

√
[pF

e (r)c]2 + m2
e c4 −mec2 + Vc(r) = 0, (A.3.4)

where Vc(r) is the Coulomb potential energy of electrons.
From this condition we obtain:

pF
e (r) =

1
c

√
V2

c (r)− 2mec2Vc(r), (A.3.5)

hence the electron number density is:

ne(r) =
1

3π2h̄3c3

[
V2

c (r)− 2mec2Vc(r)
]3/2

. (A.3.6)

The Coulomb potential energy of electrons, necessary to derive ne(r), can be
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determined as follows. Based on the Gauss law, Vc(r) obeys the following
Poisson equation:

∇2Vc(r) = −4πe2[ne(r)− np(r)], (A.3.7)

with the boundary conditions Vc(∞) = 0, Vc(0) = f inite. Introducing the
dimensionless function χ(r), defined by the relation:

Vc(r) = −h̄c
χ(r)

r
, (A.3.8)

and the new variable x = rb−1 = r
(

h̄
mπc

)−1
, from eq. (A.3.7) we obtain the

relativistic Thomas-Fermi equation:

1
3x

d2χ(x)
dx2 = −α

{
1

∆3 θ(xc − x)− 4
9π

[
χ2(x)

x2 + 2
me

mπ

χ(x)
x

]3/2}
. (A.3.9)

The boundary conditions for the function χ(x) are:

χ(0) = 0, χ(∞) = 0, (A.3.10)

as well as the continuity of χ(x) and its first derivative χ
′
(x) at the boundary

of the core.
The number density of neutrons nn(r) is:

nn(r) =
1

3π2h̄3

[
pF

n(r)
]3

, (A.3.11)

where pF
n(r) is the neutron Fermi momentum. It can be calculated with the

condition of equilibrium between the processes

e− + p→ n + νe; (A.3.12)

n→ p + e− + ν̄e, (A.3.13)

Assuming that neutrinos escape from the core as soon as they are produced,
this condition (condition of β-equilibrium) is

εF
e (r) + εF

p(r) = εF
n(r). (A.3.14)

Eq. (A.3.14) can be explicitly written as:√
[pF

p(r)c]2 + m2
pc4 −mpc2 −Vc(r) =

√
[pF

n(r)c]2 + m2
nc4 −mnc2. (A.3.15)

Np versus A relation. Using the previous equations, we derive ne(r), nn(r)
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and np(r) and, by integrating these, we obtain the Ne, Nn and Np. We also
derive a theoretical relation between Np and A and we compare it with the
data of the Periodic Table and with the semi-empirical relation:

Np =
(

A
2

)
· 1

1 +
( 3

400

)
· A2/3

(A.3.16)

that, in the limit of low A, gives the well known relation Np = A/2 (17).
Eq. (A.3.16) can be obtained by minimizing the semi-empirical mass formula,
that was first formulated by Weizsäcker in 1935 and is based on empirical
measurements and on theory (the liquid drop model of atoms).
The liquid drop model approximates the nucleus as a sphere composed of
protons and neutrons (and not electrons) and takes into account the Coulom-
bian repulsion between protons and the strong nuclear force. Another im-
portant characteristic of this model is that it is based on the property that the
mass densities of nuclei are approximately the same, indipendently from A
(67). In fact, from scattering experiments it was found the following expres-
sion for the nuclear radius RN:

RN = r0A1/3, (A.3.17)

with r0 = 1.2 fm. Using eq. (A.3.17) the nuclear density can be write as
follows:

ρN =
AmN

V
=

3AmN

4πr3
0 A

=
3mN

4πr3
0

, (A.3.18)

where mN is the nucleon mass. From eq. (A.3.18) it is clear that nuclear
density is indipendent from A, so it is constant for all nuclei.
The property of constant density for all nuclei is a common point with our
model: in fact, we choose ∆ in order to have the same mass density for every
value of A; in particular we consider the case ρ ∼ ρN, as previously said.

In table (A.1) are listed some values of A obtained with our model and the
semi-empirical mass formula, as well as the data of the Periodic Table; in fig.
(A.10) and (A.11) it is shown the comparison between the various Np − A
relations. It is clear that there is a good agreement between all the relations
for values of A typical of nuclei, with differences of the order of per cent.
Our relation and the semi-empirical one are in agreement up to A ∼ 104; for
higher values, we find that the two relations differ. We interprete these differ-
ences as due to the effects of penetration of electrons inside the core [see fig.
(A.12)]: in our model we consider a system composed of degenerate protons,
neutrons and electrons. For the smallest values of A, all the electrons are in a
shell outside the core; by increasing A, they progressively penetrate into the
core (1). These effects, which need the relativistic approach introduced in (1),
are not taken into account in the semi-empirical mass formula.

We also note that the charge to mass ratio become constant for A greater
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It is clear how the semi-empirical relation and the one obtained with our model are in good
agreement up to values of A of the order of 104; for greater values of A the two relation differ
because our model takes into account the penetration of electrons inside the core, which is
not considered in the semi-empirical mass formula.
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Np AM APT ASE
5 10.40 10.811 10.36

10 21.59 20.183 21.15
15 32.58 30.9738 32.28
20 44.24 40.08 43.72
25 56.17 54.938 55.45
30 68.43 65.37 67.46
50 120.40 118.69 118.05
70 176.78 173.04 172.54
90 237.41 232.038 230.79

110 302.18 271 292.75
150 443.98 427.73
200 644.03 617.56
250 869.32 831.63
300 1119.71 1071.08
350 1395.12 1337.23
450 2019.48 1955.57
500 2367.77 2310.96
550 2739.60 2699.45
600 3134.28 3122.83
103 6.9·103 8·103

104 2.0·105 3.45·106

105 3.0·106 3.38·109

106 3.4·107 3.37·1012

107 3.7·108 3.37·1015

1010 3.9·1011 3.37·1024

Table A.1.: Different values of Np (column 1) and corresponding values of A
from our model (AM, column 2), the Periodic Table (APT, column 3) and the
semi-empirical mass formula (ASE, column 4).
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that 107; in particular, it is well approximated by the relation Np = 0.026A
[see fig. (A.13)].

Conclusions. In this work we have derived theoretically a relation between
the total number of protons Np and the mass number A for nuclei and neu-
tron cores with the model recently proposed by Ruffini et al. (1)).
We have considered spherically symmetric systems composed of degenerate
electrons, protons and neutrons having global charge neutrality and the same
mass densities (ρ ∼ ρN). By integrating the relativistic Thomas-Fermi equa-
tion and using the equation of β-equilibrium, we have determined the total
number of protons, electrons and neutrons in the system and hence a theo-
retical relation between Np and A.
We have compared this relation with the empirical data of the Periodic Table
and with the semi-empirical relation, obtained by minimizing the Weizsäcker
mass formula by considering systems with the same mass densities. We have
shown that there’s a good agreement between all the relations for values of
A typical of nuclei, with differences of the order of per cent. Our relation and
the semi-empirical one are in agreement up to A ∼ 104; for higher values, we
find that the two relations differ. We interprete the different behaviour of our
theoretical relation as a result of the penetration of electrons (initially con-
fined in an external shell) inside the core [see fig.(A.12)], that becomes more
and more important by increasing A; these effects, which need the relativistic
approach introduced in (1), are not taken into account in the semi-empirical
mass-formula.

A.4. Supercritical fields on the surface of massive
nuclear cores: neutral core v.s. charged core

Equilibrium of electron distribution in neutral cores. In Refs. (1; 15; 18), the
Thomas-Fermi approach was used to study the electrostatic equilibrium of
electron distributions ne(r) around extended nuclear cores, where total pro-
ton and electron numbers are the same Np = Ne. Proton’s density np(r) is
constant inside core r ≤ Rc and vanishes outside the core r > Rc,

np(r) = npθ(Rc − r), (A.4.1)

where Rc is the core radius and np proton density. Degenerate electron den-
sity,

ne(r) =
1

3π2h̄3 (PF
e )3, (A.4.2)
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where electron Fermi momentum PF
e , Fermi-energy Ee(PF

e ) and Coulomb po-
tential energy Vcoul(r) are related by,

Ee(PF
e ) = [(PF

e c)2 + m2
e c4]1/2 −mec2 −Vcoul(r). (A.4.3)

The electrostatic equilibrium of electron distributions is determined by

Ee(PF
e ) = 0, (A.4.4)

which means the balance of electron’s kinetic and potential energies in Eq. (A.4.3)
and degenerate electrons occupy energy-levels up to +mec2. Eqs. (A.4.2,A.4.3,A.4.4)
give the relationships:

PF
e =

1
c

[
V2

coul(r) + 2mec2Vcoul(r)
]1/2

; (A.4.5)

ne(r) =
1

3π2(ch̄)3

[
V2

coul(r) + 2mec2Vcoul(r)
]3/2

. (A.4.6)

The Gauss law leads the following Poisson equation and boundary condi-
tions,

∆Vcoul(r) = 4πα
[
np(r)− ne(r)

]
; Vcoul(∞) = 0, Vcoul(0) = finite.(A.4.7)

These equations describe a Thomas-Fermi model for neutral nuclear cores,
and have numerically solved together with the empirical formula (15; 18)
and β-equilibrium equation (1) for the proton number Np and mass number
A = Np + Nn, where Nn is the neutron number.

Equilibrium of electron distribution in super charged cores In Ref. (32; 33), as-
suming that super charged cores of proton density (A.4.1) are bare, elec-
trons (positrons) produced by vacuum polarization fall (fly) into cores (in-
finity), one studied the equilibrium of electron distribution when vacuum
polarization process stop. When the proton density is about nuclear den-
sity, super charged core creates a negative Coulomb potential well −Vcoul(r),
whose depth is much more profound than −mec2 (see Fig. [A.14]), produc-
tion of electron-positron pairs take places, and electrons bound by the core
and screen down its charge. Since the phase space of negative energy-levels
ε(p)

ε(p) = [(pc)2 + m2
e c4]1/2 −Vcoul(r), (A.4.8)

below −mec2 for accommodating electrons is limited, vacuum polarization
process completely stops when electrons fully occupy all negative energy-
levels up to−mec2, even electric field is still critical. Therefore an equilibrium
of degenerate electron distribution is expected when the following condition
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is satisfied,

ε(p) = [(pc)2 + m2
e c4]1/2 −Vcoul(r) = −mec2, p = PF

e , (A.4.9)

and Fermi-energy

Ee(PF
e ) = ε(PF

e )−mec2 = −2mec2, (A.4.10)

which is rather different from Eq. (A.4.4). This equilibrium condition (A.4.10)
leads to electron’s Fermi-momentum and number-density (A.4.2),

PF
e =

1
c

[
V2

coul(r)− 2mec2Vcoul(r)
]1/2

; (A.4.11)

ne(r) =
1

3π2(ch̄)3

[
V2

coul(r)− 2mec2Vcoul(r)
]3/2

. (A.4.12)

which have a different sign contracting to Eqs. (A.4.5,E.0.10). Eq. (A.4.7) re-
mains the same. However, contracting to the neutrality condition Ne = Np
and ne(r)|r→∞ → 0 in the case of neutral cores, the total number of electrons
is given by

Nion
e =

∫ r0

0
4πr2drne(r) < Np, (A.4.13)

where r0 is the finite radius at which electron distribution ne(r) (A.4.12) van-
ishes: ne(r0) = 0 , i.e., Vcoul(r0) = 2mec2, and ne(r) ≡ 0 for the range r > r0.
Nion < Np indicates that such configuration is not neutral. These equations
describe a Thomas-Fermi model for super charged cores, and have numeri-
cally (32) and analytically (33) solved with assumption Np = A/2.

Ultra-relativistic solution In analytical approach (33; 48), the ultra-relativistic
approximation is adopted for Vcoul(r) � 2mec2, the term 2mec2Vcoul(r) in
Eqs. (A.4.5,E.0.10,A.4.11,A.4.12) is neglected. It turns out that approximated
Thomas-Fermi equations are the same for both cases of neutral and charged
cores, and solution Vcoul(r) = h̄c(3π2np)1/3φ(x),

φ(x) =

 1− 3
[
1 + 2−1/2 sinh(3.44−

√
3x)
]−1

, for x < 0,
√

2
(x+1.89) , for x > 0,

 , (A.4.14)

where x = 2(π/3)1/6α1/2n1/3
p (r− Rc) ∼ 0.1(r− Rc)/λπ and the pion Comp-

ton length λπ = h̄/(mπc). At the core center r = 0(x → −∞), Vcoul(0) =
h̄c(3π2np)1/3 ∼ mπc2. On core surface r = Rc(x = 0), Vcoul(Rc) = 3/4Vcoul(0)�
mec2, indicating that the ultra-relativistic approximation is applicable for r .
Rc. This approximation breaks down at r & r0. Clearly, it is impossible to de-
termine the value r0 out of ultra-relativistically approximated equation, and
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full Thomas-Fermi equation (A.4.7) with source terms Eq. (E.0.10) for the neu-
tral case, and Eq. (A.4.12) for the charged case have to be solved.

For r < r0 where Vcoul(r) > 2mec2, we treat the term 2mec2Vcoul(r) in
Eqs. (E.0.10,A.4.12) as a small correction term, and find the following inequal-
ity is always true

nneutral
e (r) > ncharged

e (r), r < r0, (A.4.15)

where nneutral
e (r) and ncharged

e (r) stand for electron densities of neutral and
super charged cores. For the range r > r0, ncharged

e (r) ≡ 0 in the case of
super charged core, while nneutral

e (r) → 0 in the case of neutral core, which
should be calculated in non-relativistic approximation: the term V2

coul(r) in
Eq. (E.0.10) is neglected.

In conclusion, the physical scenarios and Thomas-Fermi equations of neu-
tral and super charged cores are slightly different. When the proton den-
sity np of cores is about nuclear density, ultra-relativistic approximation ap-
plies for the Coulomb potential energy Vcoul(r) � mec2 in 0 < r < r0 and
r0 > Rc, and approximate equations and solutions for electron distributions
inside and around cores are the same. As relativistic regime r ∼ r0 and non-
relativistic regime r > r0 (only applied to neutral case) are approached, solu-
tions in two cases are somewhat different, and need direct integrations.
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Figure A.14.: Potential energy-gap ±mec2 − Vcoul(r) and electron mass-gap
±mec2 in the unit of mec2 are plotted as a function of (r − Rc)/(10λπ). The
potential depth inside core (r < Rc) is about pion mass mπc2 � mec2 and po-
tential energy-gap and electron mass-gap are indicated. The radius r0 where
electron distribution ne(r0) vanishes in super charged core case is indicated
as r0−, since it is out of plotting range.
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A.5. The Extended Nuclear Matter Model with
Smooth Transition Surface

The Relativistic Thomas–Fermi Equation.
Let us to introduce the proton distribution function fp(x) by mean of np(x) =

nc
p fp(x), where nc

p is the central number density of protons. We use the di-

mensionless unit x = (r − b)/a, with a−1 =
√

4παλenc
p, λe is the electron

Compton wavelength, b the length where initial conditions are given (x = 0)
and α is the fine structure constant.

Using the Poisson’s equation and the equilibrium condition for the gas of
electrons

Ee
F = mec2

√
1 + x2

e −mec2 − eV = 0 , (A.5.1)

where e is the fundamental charge, xe the normalized electron Fermi momen-
tum and V the electrostatic potential, we obtain the relativistic Thomas–Fermi
equation

ξ ′′e (x) +
(

2
x + b/a

)
ξ ′e(x)− [ξ2

e (x)− 1]3/2

µ
+ fp(x) = 0 , (A.5.2)

where µ = 3π2λ3
e nc

p and we have introduced the normalized electron chem-
ical potential in absence of any field ξe =

√
1 + x2

e . For a given distribution
function fp(x) and a central number density of protons nc

p, the above equa-
tion can be integrated numerically with the boundary conditions

ξe(0) =
√

1 +
[
µ δ fp(0)

]2/3 , ξ ′e(0) < 0 , (A.5.3)

where δ ≡ ne(0)/np(0).
The Woods-Saxon–like Proton Distribution Function.
We simulate a monotonically decreasing proton distribution function ful-

filling a Woods–Saxon dependence

fp(x) =
γ

γ + eβx , (A.5.4)

where γ > 0 and β > 0. In fig. A.15 we show the proton distribution function
for a particular set of parameters.

Results of the Numerical Integration.
We have integrated numerically the eq.(A.5.2) for several sets of parame-

ters and initial conditions. As an example, we show the results for the proton
distribution function shown in fig. A.15, with nc

p = 1.38× 1036(cm−3). This
system was integrated with Ne = Np = 1054, mass number A = 1.61× 1056

and δ ≈ 0.967.
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Figure A.15.: Proton distribution function for γ = 1.5, β ≈ 0.0585749.

We summarize the principal features of our model in figures A.16 and A.17,
where we have plotted the electric field in units of the critical field Ec =
m2

e c3

eh̄ , (me and e are the electron mass and charge), and the normalized charge
separation function

∆(x) =
np(x)− ne(x)

np(0)
. (A.5.5)

We see that the electric field is overcritical but smaller respect to the case of
a sharp step proton distribution used in (1; 14). We have performed several
numerical integrations expanding the transition surface and confirm the exis-
tence of overcritical fields but it is worth to mention that it could be subcritical
expanding the width of the transition surface several orders of magnitude in
electron Compton wavelength units.

We also see a displacement of the location of the maximum of intensity.
This effect is due to the displacement of the point where ne = np. After this
point, the charge density becomes negative producing an effect of screening
of the charged core up to global charged neutrality is achieved.
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-2 2 4 6

x � Λe

20

40

60

80

100

E�Ec

Figure A.16.: Electric field in units of the critical field Ec.
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Figure A.17.: Charge separation function.
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B. Electron-positron pairs
production in an electric
potential of massive cores

B.1. Introduction

Very soon after the Dirac equation for a relativistic electron was discovered
(49; 50), Gordon (51) (for all Z < 137) and Darwin (52) (for Z = 1) found its
solution in the point-like Coulomb potential V(r) = −Zα/r, they obtained
the well-known Sommerfeld’s formula (53) for energy-spectrum,

E(n, j) = mc2

[
1 +

(
Zα

n− |K|+ (K2 − Z2α2)1/2

)2
]−1/2

, (B.1.1)

where the fine-structure constant α = e2/h̄c, the principle quantum number
n = 1, 2, 3, · · · and

K =
{
−(j + 1/2) = −(l + 1), if j = l + 1

2 , l ≥ 0
(j + 1/2) = l, if j = l − 1

2 , l ≥ 1
(B.1.2)

l = 0, 1, 2, · · · is the orbital angular momentum corresponding to the upper
component of Dirac bi-spinor, j is the total angular momentum. The integer
values n and j label bound states whose energies are E(n, j) ∈ (0, mc2). For
the example, in the case of the lowest energy states, one has

E(1S 1
2
) = mc2

√
1− (Zα)2, (B.1.3)

E(2S 1
2
) = E(2P1

2
) = mc2

√
1 +

√
1− (Zα)2

2
, (B.1.4)

E(2P3
2
) = mc2

√
1− 1

4
(Zα)2. (B.1.5)

For all states of the discrete spectrum, the binding energy mc2 − E(n, j) in-
creases as the nuclear charge Z increases. No regular solution with n = 1, l =
0, j = 1/2 and K = −1 (the 1S1/2 ground state) is found for Z > 137, this
was first noticed by Gordon in his pioneer paper (51). This is the problem
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so-called “Z = 137 catastrophe”.

The problem was solved (13; 30; 54; 55; 56; 57; 58; 59) by considering the
fact that the nucleus is not point-like and has an extended charge distribu-
tion, and the potential V(r) is not divergent when r → 0. The Z = 137
catastrophe disappears and the energy-levels E(n, j) of the bound states 1S,
2P and 2S, · · · smoothly continue to drop toward the negative energy con-
tinuum (E− < −mc2), as Z increases to values larger than 137. The critical
values Zcr for E(n, j) = −mc2 were found (13; 55; 57; 58; 59; 62; 63; 64):
Zcr ' 173 is a critical value at which the lowest energy-level of the bound
state 1S1/2 encounters the negative energy continuum, while other bound
states 2P1/2, 2S3/2, · · · encounter the negative energy continuum at Zcr > 173,
thus energy-level-crossings and productions of electron and positron pair
takes place, provided these bound states are unoccupied. We refer the readers
to (13; 57; 58; 59; 60; 61; 62; 63; 64) for mathematical and numerical details.

The energetics of this phenomenon can be understood as follow. The energy-
level of the bound state 1S1/2 can be estimated as follow,

E(1S1/2) = mc2 − Ze2

r̄
< −mc2, (B.1.6)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the binding energy
of this state Ze2/r̄ > 2mc2. If this bound state is unoccupied, the bare nucleus
gains a binding energy Ze2/r̄ larger than 2mc2, and becomes unstable against
the production of an electron-positron pair. Assuming this pair-production
occur around the radius r̄, we have energies of electron (ε−) and positron
(ε+):

ε− =
√

(c|p−|)2 + m2c4 − Ze2

r̄
; ε+ =

√
(c|p+|)2 + m2c4 +

Ze2

r̄
, (B.1.7)

where p± are electron and positron momenta, and p− = −p+. The total
energy required for a pair production is,

ε−+ = ε− + ε+ = 2
√

(c|p−|)2 + m2c4, (B.1.8)

which is independent of the potential V(r̄). The potential energies ±eV(r̄) of
electron and positron cancel each other and do not contribute to the total en-
ergy (B.1.8) required for pair production. This energy (B.1.8) is acquired from
the binding energy (Ze2/r̄ > 2mc2) by the electron filling into the bound state
1S1/2. A part of the binding energy becomes the kinetic energy of positron
that goes out. This is analogous to the familiar case that a proton (Z = 1)
catches an electron into the ground state 1S1/2, and a photon is emitted with
the energy not less than 13.6 eV.

In this article, we study classical and semi-classical states of electrons, electron-
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positron pair production in an electric potential of macroscopic cores with
charge Q = Z|e|, mass M and macroscopic radius Rc.

B.2. Classical description of electrons in potential
of cores

B.2.1. Effective potentials for particle’s radial motion

Setting the origin of spherical coordinates (r, θ, φ) at the center of such cores,
we write the vectorial potential Aµ = (A, A0), where A = 0 and A0 is the
Coulomb potential. The motion of a relativistic electron with mass m and
charge e is described by its radial momentum pr, total angular momenta pφ

and the Hamiltonian,

H± = ±mc2
√

1 + (
pr

mc
)2 + (

pφ

mcr
)2 −V(r), (B.2.1)

where the potential energy V(r) = eA0, and ± corresponds for positive
and negative energies. The states corresponding to negative energy solu-
tions are fully occupied. The total angular momentum pφ is conserved, for
the potential V(r) is spherically symmetric. For a given angular momentum
pφ = mv⊥r, where v⊥ is the transverse velocity, the effective potential energy
for electron’s radial motion is

E±(r) = ±mc2
√

1 + (
pφ

mcr
)2 −V(r). (B.2.2)

Outside the core (r ≥ Rc), the Coulomb potential energy V(r) is given by

Vout(r) =
Ze2

r
, (B.2.3)

where ± indicates positive and negative effective energies. Inside the core
(r ≤ Rc), the Coulomb potential energy is given by

Vin(r) =
Ze2

2Rc

[
3−

(
r

Rc

)2
]

, (B.2.4)

where we postulate the charged core has a uniform charge distribution with
constant charge density ρ = Ze/Vc, and the core volume Vc = 4πR3

c /3.
Coulomb potential energies outside the core (B.2.3) and inside the core (B.2.4)
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B. Electron-positron pairs production in an electric potential of massive
cores

is continuous at r = Rc. The electric field on the surface of the core,

Es =
Q
R2

c
=

λe

Rc
Ec, β ≡ Ze2

mc2Rc
(B.2.5)

where the electron Compton wavelength λe = h̄/(mc), the critical electric
field Ec = m2c3/(eh̄) and the parameter β is the electric potential-energy on
the surface of the core in unit of the electron mass-energy.

B.2.2. Stable classical orbits (states) outside the core.

Given different values of total angular momenta pφ, the stable circulating
orbits RL (states) are determined by the minimum of the effective potential
E+(r) (B.2.2) (see Fig. B.1), at which dE+(r)/dr = 0. We obtain stable orbits
locate at the radii RL,

RL =

(
p2

φ

Ze2m

)√
1−

(
Ze2

cpφ

)2

, RL ≥ Rc, (B.2.6)

for different pφ-values. Substituting Eq. (B.2.6) into Eq. (B.2.2), we find the
energy of electron at each stable orbit,

E ≡ min(E+) = mc2

√
1−

(
Ze2

cpφ

)2

. (B.2.7)

For the condition RL & Rc, we have(
Ze2

cpφ

)2

.
1
2

[
β(4 + β2)1/2 − β2

]
, (B.2.8)

where the semi-equality holds for the last stable orbits outside the core RL →
Rc + 0+. In the point-like case Rc → 0, the last stable orbits are

cpφ → Ze2 + 0+, RL → 0+, E→ 0+. (B.2.9)

Eq. (B.2.7) shows that only positive or null energy solutions (states) to exists
in the case of a point-like charge, which is the same as the energy-spectrum
Eqs. (B.1.3,B.1.4,B.1.5) in quantum mechanic scenario. While for pφ � 1, radii
of stable orbits RL � 1 and energies E→ mc2 + 0−, classical electrons in these
orbits are critically bound for their banding energy goes to zero. We conclude
that the energies (B.2.7) of stable orbits outside the core must be smaller than
mc2, but larger than zero, E > 0. Therefore, no energy-level crossing with the
negative energy spectrum occurs.
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B.2.3. Stable classical orbits inside the core.

We turn to the stable orbits of electrons inside the core. Analogously, using
Eqs. (B.2.2,B.2.4) and dE+(r)/dr = 0, we obtain the stable orbit radius RL ≤ 1
in the unit of Rc, obeying the following equation,

β2(R8
L + κ2R6

L) = κ4; κ =
pφ

mcRc
. (B.2.10)

and corresponding to the minimal energy (binding energy) of these states

E =
Ze2

Rc

[( cpφ

Ze2

)2 1
R4

L
− 1

2
(3− R2

L)

]
. (B.2.11)

There are 8 solutions to this polynomial equation (B.2.10), only one is physical
solution RL that has to be real, positive and smaller than one. As example,
the numerical solution to Eq. (B.2.10) is RL = 0.793701 for β = 4.4 · 1016 and
κ = 2.2 · 1016. In following, we respectively adopt non-relativistic and ultra-
relativistic approximations to to obtain analytical solutions.

First considering the non-relativistic case for those stable orbit states whose
the kinetic energy term characterized by angular momentum term pφ, see
Eq. (B.2.2), is much smaller than the rest mass term mc2, we obtain the fol-
lowing approximate equation,

β2R8
L ' κ4, (B.2.12)

and the solutions for stable orbit radii are,

RL '
κ1/2

β1/4 =
( cpφ

Ze2

)1/2
β1/4 < 1, (B.2.13)

and energies,

E '
(

1− 3
2

β +
1
2

κβ1/2
)

mc2. (B.2.14)

The consistent conditions for this solution are β1/2 > κ for RL < 1, and
β � 1 for non-relativistic limit v⊥ � c. As a result, the binding energies
(B.2.14) of these states are mc2 > E > 0, are never less than zero. These in fact
correspond to the stable states which have large radii closing to the radius Rc
of cores and v⊥ � c.

Second considering the ultra-relativistic case for those stable orbit states
whose the kinetic energy term characterized by angular momentum term pφ,
see Eq. (B.2.2), is much larger than the rest mass term mc2, we obtain the
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following approximate equation,

β2R6
L ' κ2, (B.2.15)

and the solutions for stable orbit radii are,

RL '
(

κ

β

)1/3

=
( pφc

Ze2

)1/3
< 1, (B.2.16)

which gives RL ' 0.7937007 for the same values of parameters β and κ in
above. The consistent condition for this solution is β > κ � 1 for RL < 1.
The energy levels of these ultra-relativistic states are,

E ' 3
2

β

[( pφc
Ze2

)2/3
− 1
]

mc2, (B.2.17)

and mc2 > E > −1.5βmc2. The particular solutions E = 0 and E ' −mc2 are
respectively given by

( pφc
Ze2

)
' 1;

( pφc
Ze2

)
'
(

1− 2
3β

)3/2

. (B.2.18)

These in fact correspond to the stable states which have small radii closing to
the center of cores and v⊥ . c.

To have the energy-level crossing to the negative energy continuum, we
are interested in the values β > κ � 1 for which the energy-levels (B.2.17) of
stable orbit states are equal to or less than −mc2,

E ' 3
2

β

[( pφc
Ze2

)2/3
− 1
]

mc2 ≤ −mc2. (B.2.19)

As example, with β = 10 and κ = 2, RL ' 0.585, Emin ' −9.87mc2. The
lowest energy-level of electron state is pφ/(Ze2) = κ/β→ 0 with the binding
energy,

Emin = −3
2

βmc2, (B.2.20)

locating at RL ' (pφc/Ze2)1/3 → 0, the bottom of the potential energy Vin(0)
(B.2.4).
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B.3. Semi-Classical description

B.3.1. Bohr-Sommerfeld quantization

In order to have further understanding, we consider the semi-classical sce-
nario. Introducing the Planck constant h̄ = h/(2π), we adopt the semi-
classical Bohr-Sommerfeld quantization rule∫

pφdφ ' h(l +
1
2
), ⇒ pφ(l) ' h̄(l +

1
2
), l = 0, 1, 2, 3, · · ·, (B.3.1)

which are discrete values selected from continuous total angular momentum
pφ in the classical scenario. The variation of total angular momentum ∆pφ =
±h̄ in th unit of the Planck constant h̄. Substitution( pφc

Ze2

)
⇒
(

2l + 1
2Zα

)
, (B.3.2)

where the fine-structure constant α = e2/(h̄c), must be performed in classical
solutions that we obtained in section (B.2).

1. The radii and energies of stable states outside the core (B.2.6) and (B.2.7)
become:

RL = λ

(
2l + 1

Zα

)√
1−

(
2Zα

2l + 1

)2

, (B.3.3)

E = mc2

√
1−

(
2Zα

2l + 1

)2

, (B.3.4)

where λ is the electron Compton length.

2. The radii and energies of non-relativistic stable states inside the core
(B.2.13) and (B.2.14) become:

RL '
(

2l + 1
2Zα

)1/2

β1/4, (B.3.5)

E '
(

1− 3
2

β +
λ(2l + 1)

4Rc
β1/2

)
mc2. (B.3.6)

3. The radii and energies of ultra-relativistic stable states inside the core

343



B. Electron-positron pairs production in an electric potential of massive
cores

(B.2.16) and (B.2.17) become:

RL '
(

2l + 1
2Zα

)1/3

, (B.3.7)

E ' 3
2

β

[(
2l + 1
2Zα

)2/3

− 1

]
mc2. (B.3.8)

Note that radii RL in the second and third cases are in unit of Rc.

B.3.2. Stability of semi-classical states

When these semi-classical states are not occupied as required by the Pauli
Principle, the transition from one state to another with different discrete val-
ues of total angular momentum l (l1, l2 and ∆l = l2 − l1 = ±1) undergoes
by emission or absorption of a spin-1 (h̄) photon. Following the energy and
angular-momentum conservations, photon emitted or absorbed in the transi-
tion have angular momenta pφ(l2) − pφ(l1) = h̄(l2 − l1) = ±h̄ and energy
E(l2) − E(l1). In this transition of stable states, the variation of radius is
∆RL = RL(l2)− RL(l1).

We first consider the stability of semi-classical states against such transition
in the case of point-like charge, i.e., Eqs. (B.3.3,B.3.4) with l = 0, 1, 2, · · ·. As
required by the Heisenberg indeterminacy principle ∆φ∆pφ ' 4πpφ(l) & h,
the absolute ground state for minimal energy and angular momentum is
given by the l = 0 state, pφ ∼ h̄/2, RL ∼ λ(Zα)−1

√
1− (2Zα)2 > 0 and

E ∼ mc2
√

1− (2Zα)2 > 0, which corresponds to the last stable orbit (B.2.9)
in the classical scenario. Thus the stability of all semi-classical states l > 0
is guaranteed by the Pauli principle. This is only case for Zα ≤ 1/2. While
for Zα > 1/2, there is not an absolute ground state in the semi-classical sce-
nario. This can be understood by examining how the lowest energy states are
selected by the quantization rule in the semi-classical scenario out of the last
stable orbits (B.2.9) in the classical scenario. For the case of Zα ≤ 1/2, equat-
ing pφ in Eq. (B.2.9) to pφ = h̄(l + 1/2) (B.3.1), we find the selected state l = 0
is only possible solution so that the ground state l = 0 in the semi-classical
scenario corresponds to the last stable orbits (B.2.9) in the classical scenario.
While for the case of Zα > 1/2, equating pφ in Eq. (B.2.9) to pφ = h̄(l + 1/2)
(B.3.1), we find the selected semi-classical state

l̃ =
Zα− 1

2
> 0, (B.3.9)

in the semi-classical scenario corresponds to the last stable orbits (B.2.9) in the
classical scenario. This state l = l̃ > 0 is not protected by the Heisenberg in-
determinacy principle from quantum-mechanically decaying in h̄-steps to the
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states with lower angular momenta and energies (correspondingly smaller
radius RL (B.3.3)) via photon emissions. This clearly shows that the “Z = 137-
catastrophe” corresponds to RL → 0, falling to the center of the Coulomb
potential and all semi-classical states (l) are unstable.

Then we consider the stability of semi-classical states against such transi-
tion in the case of charged cores Rc 6= 0. Substituting pφ in Eq. (B.3.1) into
Eq. (B.2.8), we obtain the selected semi-classical state l̃ corresponding to the
last stable orbit outside the core,

l̃ =
√

2
(

Rc

λ

)[(
4Rc

Zαλ
+ 1
)1/2

− 1

]−1/2

≈ (Zα)1/4
(

Rc

λ

)3/4

> 0. (B.3.10)

Analogously to Eq. (B.3.9), the same argument concludes the instability of
this semi-classical state, which must quantum-mechanically decay to states
with angular momentum l < l̃ inside the core, provided these semi-classical
states are not occupied. This conclusion is independent of Zα-value.

We go on to examine the stability of semi-classical states inside the core. In
the non-relativistic case (1 � β > κ2), the last classical stable orbits locate
at RL → 0 and pφ → 0 given by Eqs. (B.2.13,B.2.14), corresponding to the
lowest semi-classical state (B.3.5,B.3.6) with l = 0 and energy mc2 > E > 0.
In the ultra-relativistic case (β > κ � 1), the last classical stable orbits locate
at RL → 0 and pφ → 0 given by Eqs. (B.2.16,B.2.17), corresponding to the
lowest semi-classical state (B.3.7,B.3.8) with l = 0 and minimal energy,

E ' 3
2

β

[(
1

2Zα

)2/3

− 1

]
mc2 ≈ −3

2
βmc2. (B.3.11)

This concludes that the l = 0 semi-classical state inside the core is an absolute
ground state in both non- and ultra-relativistic cases. The Pauli principle
assure that all semi-classical states l > 0 are stable, provided all these states
accommodate electrons. The electrons can be either present inside the neutral
core or produced from the vacuum polarization, later will be discussed in
details.

We are particular interested in the ultra-relativistic case β > κ � 1, i.e.,
Zα� 1, the energy-levels of semi-classical states can be profound than−mc2

(E < −mc2), energy-level crossings and pair-productions occur if these states
are unoccupied, as discussed in introductory section. It is even more im-
portant to mention that neutral cores like neutron stars of proton number
Z ∼ 1052, the Thomas-Fermi approach has to be adopted to find the con-
figuration of electrons in these semi-classical states, which has the depth of
energy-levels E ∼ −mπc2 to accommodate electrons and a supercritical elec-
tric field (E > Ec) on the surface of the core (1; 48).

345



B. Electron-positron pairs production in an electric potential of massive
cores

B.4. Production of electron-positron pair

When the energy-levels of semi-classical (bound) states E ≤ −mc2 (B.2.19),
energy-level crossings between these energy-levels (B.2.17) and negative en-
ergy continuum (B.2.2) for pr = 0, as shown in Fig. B.2. The energy-level-
crossing indicates that E (B.2.17) and E− (B.2.2) are equal,

E = E−, (B.4.1)

where angular momenta pφ in E (B.3.8) and E− (B.2.2) are the same for angular-
momentum conservation. The production of electron-positron pairs must
takes place, provided these semi-classical (bound) states are unoccupied. The
phenomenon of pair production can be understood as a quantum-mechanical
tunneling process of relativistic electrons. The energy-levels E of semi-classical
(bound) states are given by Eq. (B.3.8) or (B.2.19). The probability amplitude
for this process can be evaluated by a semi-classical calculation using WKB
method (64):

WWKB(|p⊥|) ≡ exp
{
−2

h̄

∫ Rn

Rb

prdr
}

, (B.4.2)

where |p⊥| = pφ/r is transverse momenta and the radial momentum,

pr(r) =
√

(c|p⊥|)2 + m2c4 − [E + V(r)]2. (B.4.3)

The energy potential V(r) is either given by Vout(r) (B.2.3) for r > Rc, or Vin(r)
(B.2.4) for r < Rc. The limits of integration (B.4.2): Rb = RL < Rc (B.2.16) or
(B.3.7) indicating the location of the classical orbit (classical turning point)
of semi-classical (bound) state; while another classical turning point Rn is
determined by setting pr(r) = 0 in Eq. (B.4.3). There are two cases: Rn < Rc
and Rn > Rc, depending on β and κ values.

To obtain a maximal WKB-probability amplitude (B.4.2) of pair production,
we only consider the case that the charge core is bare and

• the lowest energy-levels of semi-classical (bound) states: pφ/(Ze2) =
κ/β→ 0, the location of classical orbit(B.2.16) RL = Rb → 0 and energy
(B.2.17) E→ Emin = −3βmc2/2 (B.2.20);

• another classical turning point Rn ≤ Rc, since the probability is expo-
nentially suppressed by a large tunneling length ∆ = Rn − Rb.

In this case (Rn ≤ Rc), Eq. (B.4.3) becomes

pr =
√

(c|p⊥|)2 + m2c4

√
1− β2m2c4

4[(c|p⊥|)2 + m2c4]

(
r

Rc

)4

, (B.4.4)
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and pr = 0 leads to

Rn

Rc
=
(

2
βmc2

)1/2

[(c|p⊥|)2 + m2c4]1/4. (B.4.5)

Using Eqs. (B.4.2,B.4.4,B.4.5), we have

WWKB(|p⊥|) = exp

{
−23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

∫ 1

0

√
1− x4dx

}

= exp

{
−0.87

23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

}
. (B.4.6)

Dividing this probability amplitude by the tunneling length ∆ ' Rn and time
interval ∆t ' 2h̄π/(2mc2) in which the quantum tunneling occurs, and inte-
grating over two spin states and the transverse phase-space 2

∫
dr⊥dp⊥/(2πh̄)2,

we approximately obtain the rate of pair-production per the unit of time and
volume,

ΓNS ≡
d4N

dtd3x
' 1.15

6π2

(
Zα

τR3
c

)
exp

{
− 2.46

(Zα)1/2

(
Rc

λ

)3/2
}

, (B.4.7)

=
1.15
6π2

(
β

τλR2
c

)
exp

{
−2.46Rc

β1/2λ

}
, (B.4.8)

=
1.15
6π2

(
1

τλ2Rc

)(
Es

Ec

)
exp

{
−2.46

(
Rc

λ

)1/2(Ec

Es

)1/2
}

,(B.4.9)

where Es = Ze/R2
c being the electric field on the surface of the core and the

Compton time τ = h̄/mc2.

To have the size of this pair-production rate, we compare it with the Sauter-
Euler-Heisenberg-Schwinger rate of pair-production in a constant field E (16;
34; 35),

ΓS ≡
d4N

dtd3x
' 1

4π3τλ3

(
E
Ec

)2

exp
{
−π

Ec

E

}
. (B.4.10)

When the parameter β ' (Rc/λ)2, Eq. (B.4.8) becomes

ΓNS ≡
d4N

dtd3x
' 1.15

6π2

(
1

τλ3

)
exp {−2.46} = 1.66 · 10−3/(τλ3), (B.4.11)

which is close to the Sauter-Euler-Heisenberg-Schwinger rate (B.4.10) ΓS '
3.5 · 10−4/(τλ3) at E ' Ec. Taking a neutron star with core mass M = M�
and radius Rc = 10km, we have Rc/λ = 2.59 · 1016 and β = 3.86 · 10−17Zα,
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leading to Z ' 2.4 · 1051 and the electric field on the core surface Es/Ec =
Zα(λ/Rc)2 ' 2.6 · 1016. In this case, the charge-mass radio Q/(G1/2M) =
2 · 10−6|e|/(G1/2mp) = 2.2 · 1012, where where G is the Newton constant and
proton’s charge-mass radio |e|/(G1/2mp) = 1.1 · 1018.

Let us consider another case that the electric field on the core surface Es
(B.2.5) is about the critical field (Es ' Ec). In this case, Z = α−1(Rc/λ)2 '
9.2 · 1034, β = Zαλ/Rc = Rc/λ ' 2.59 · 1016, and the rate (B.4.8) becomes

ΓNS ≡
d4N

dtd3x
' 1.15

6π2

(
1

τλ3

)(
λ

Rc

)
exp

{
−2.46

(
Rc

λ

)}
, (B.4.12)

which is exponentially smaller than Eq. (B.4.11) for Rc � λ. In this case, the
charge-mass radio Q/(G1/2M) = 8.46 · 10−5.

It is interesting to compare this rate of electron-positron pair-production
with the rate given by the Hawking effect. We take Rc = 2GM/c2 and the
charge-mass radio Q/(G1/2M) ' 10−19 for a naive balance between gravita-
tional and electric forces. In this case β = 1

2(Q/G1/2M)(|e|/G1/2m) ' 102,
the rate (B.4.8) becomes,

ΓNS =
1.15
6π2

(
25

τλ3

)(
1

mM

)
exp {−0.492(mM)} , (B.4.13)

where mM = Rc/(2λ). This is much larger than the rate of electron-positron
emission by the Hawking effect (65),

ΓH ∼ exp {−8π(mM)} , (B.4.14)

since the exponential factor exp {−0.492(mM)} is much larger than exp {−8π(mM)},
where 2mM = Rc/λ� 1.

B.5. Summary and remarks

In this letter, analogously to the study in atomic physics with large atomic
number Z, we study the classical and semi-classical (bound) states of elec-
trons in the electric potential of a massive and charged core, which has a uni-
form charge distribution and macroscopic radius. We have found negative
energy states of electrons inside the core, whose energies can be smaller than
−mc2, and the appearance of energy-level crossing to the negative energy
spectrum. As results, quantum tunneling takes place, leading to electron-
positron pairs production, electrons then occupy these semi-classical (bound)
states and positrons are repelled to infinity. Assuming that massive charged
cores are bare and non of these semi-classical (bound) states are occupied, we
analytically obtain the maximal rate of electron-positron pair production in
terms of core’s radius, charge and mass, and we compare it with the Sauter-

348



B.5. Summary and remarks

Euler-Heisenberg-Schwinger rate of pair-production in a constant field. We
have seen that even for very small charge-mass radio of the core that is given
by the the naive balance between gravitational and electric forces, this rate is
much larger than the rate of electron-positron pair-production by the Hawk-
ing effect.

Any electron occupations of these semi-classical (bound) states must screen
core’s charge and the massive core is no longer bare. The electric potential
potential inside the core is changed. For the core consists of a large number of
electrons, the Thomas-Fermi approach has to be adopted. We recently study
(1; 48) the electron distribution inside and outside the massive core, i.e., the
distribution of electrons occupying stable states of the massive core, and find
the electric field on the surface of the massive core is overcritical.

2 4 6 8 10
r�Rc

-4

-3

-2

-1

1

2

E±�mc
2

E+

E-

Figure B.1.: In the case of point-like charge distribution, we plot the pos-
itive and negative effective potential energies E± (B.2.2), pφ/(mcRc) = 2
and Ze2 = 1.95mc2Rc, to illustrate the radial location RL (B.2.6) of stable
orbits where E+ has a minimum (B.2.7). All stable orbits are described by
cpφ > Ze2. The last stable orbits are given by cpφ → Ze2 + 0+, whose radial
location RL → 0 and energy E→ 0+. There is no any stable orbit with energy
E < 0 and the energy-level crossing with the negative energy spectrum E− is
impossible.
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Rb Rn

Figure B.2.: For the core κ = 2 and β = 6, we plot the positive and negative
effective potentials E± (B.2.2) , in order to illustrate the radial location (B.2.16)
RL < Rc of stable orbit, where E+’s minimum (B.2.17) E < mc2 is. All stable
orbits inside the core are described by β > κ > 1. The last stable orbit is given
by κ/β → 0, whose radial location RL → 0 and energy E → Emin (B.2.20).
We indicate that the energy-level crossing between bound state (stable orbit)
energy at RL = Rb and negative energy spectrum E− (B.2.17) at the turning
point Rn.
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C. On the Generalization of the
Oppenheimer–Volkoff Model of
Neutron Stars

The Einstein–Maxwell Field Equations.
The metric for a spherically symmetric spacetime can be written as

ds2 = −eνc2dt2 + eλdr2 + r2dθ2 + r2 sin2 dφ2 , (C.0.1)

where ν and λ are functions of r. We denote xα ≡ (x0, x1, x2, x3) =
(c t, r, θ, φ).

The energy–momentum tensor for an isotropic fluid endowed with electric
field can be written as

Tαβ = (ε̄ + p̄)uαuβ + p̄gαβ + Πem
αβ , (C.0.2)

Πem
αβ = 2pem(hαβ − 3χαχβ) , (C.0.3)

where

ε̄ = ε + εem , p̄ = p + pem , εem = 3pem =
e−(ν+λ)(ϕ′)2

8π
,

being ε and p the energy density and pressure of the fluid, ϕ the Coulomb
potential, uα is a future directed time–like vector (uαuα = −c2, u0 > 0), χα is
a space–like vector (χαχα = c2) and hαβ = uαuβ + gαβ is the projection tensor.

Thus the Einstein–Maxwell Field equations read

e−λ

(
λ′

r
− 1

r2

)
+

1
r2 =

8πG
c4 ε̄ , (C.0.4)

e−λ

(
ν′

r
+

1
r2

)
− 1

r2 =
8πG

c4 (p− 3pem) , (C.0.5)

p′ = −ν′

2
(ε + p)− e−ν/2ϕ′ρch , (C.0.6)

ϕ′′ +
[

2
r
− (λ′ + ν′)

2

]
ϕ′ = −4πeν/2eλρch , (C.0.7)
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where ρch is the charge density.
The Eq.(C.0.6) is the generalization of the TOV equation for charged fluids

and Eq.(C.0.7) is the general relativistic version of the Poisson equation.
The TOV Equation and the Equilibrium Conditions for the Gas.
In this section we derive the relation between the TOV equation and the

equilibrium condition for the gas.
We consider a gas of electrons, protons and neutrons which is governed for

the relativistic degenerate equation of state

ε = kn ε̃ , p = kn p̃ , kn ≡
mnc2

8π2λ3
n

, λi =
h̄

mic
, (C.0.8)

ε̃ = ∑
i=e,p,n

ρi , p̃ = ∑
i=e,p,n

pi , εi = k̄i Φi , pi = k̄i Ψi , k̄i ≡ (mi/mn)4 ,

(C.0.9)

Φi = xi(1 + 2x2
i )
√

1 + x2
i − ln(xi +

√
1 + x2

i ) , Ψi =
8
3

x3
i

√
1 + x2

i −Φi ,

(C.0.10)

where xi ≡
PF

i
mic

= λi(3π2ni)1/3, being mi the rest–mass of the particle, PF
i

its Fermi momentum, λi its Compton wavelength and ni its number density.
By definition, the above EOS follows the first law of the thermodynamics

for a gas at zero temperature

εi + pi = ni µi , p′i = ni µ′i , (C.0.11)

where µi = mic2
√

1 + x2
i is the chemical potential, so using it the the TOV

equation (C.0.6) becomes

∑
i=e,p,n

ni (µ′i +
ν′

2
µi + qie−ν/2ϕ′) = 0 . (C.0.12)

Using the General Relativistic Fermi energy of a gas at T = 0 (68)

EF
i =

√
−g00µi + qi Aαuα , (C.0.13)

where Aα is the electromagnetic four potential, which in the present case
becomes

EF
i = eν/2µi + qi ϕ , (C.0.14)

the TOV equation (C.0.12) can be written as

∑
i=e,p,n

ni
dEF

i
dr

= 0 . (C.0.15)
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Therefore, the TOV equation is, indeed, an equilibrium equation for the
Fermi energy when we deal with one-component gases because it reduces
to EF = constant. We recall that the above definition of Fermi energy con-
tains the rest energy of the system, so if we want conserve analogy with the
classical and special relativistic case we must redefine it as follows

εF
e = EF

e − eνs/2mec2 , (C.0.16)

which obviously does not change the TOV equation (C.0.15). The subscript
‘s’ means that we have redefined the Fermi energy up to a constant, which we
have taken as its value on the surface of the configuration assuming global
neutrality (ϕs = 0).

Assuming the general relativistic Thomas-Fermi equilibrium condition for
the electron gas and the β− equilibrium condition

εF
e = 0 , εF

n = εF
p , (C.0.17)

the TOV equation (C.0.15) reduces to

εF
e = εF

p = εF
n = 0 . (C.0.18)

It is worth to note that the above equations represent just the conditions of
thermodynamic equilibrium of the gas, so we can extract enormous informa-
tion from them. In fact, we will use them to demonstrate that local charge
neutrality (ne = np) does not represent a self-consistent solution to the sys-
tem.

Let us rewrite Eqs.(C.0.18) in the form

√
1 + x2

e =
eνs/2 + eϕ/(mec2)
eνs/2 − eϕ/(mpc2)

√
1 + x2

p , (C.0.19)√
1 + x2

n =
eνs/2

eνs/2 − eϕ/(mpc2)

√
1 + x2

p . (C.0.20)

From the above equations we can see there is an upper limit for the Coulomb
potential, i.e.

eϕ < eνs/2mpc2 . (C.0.21)

In addition, if we take the case of local neutrality ϕ ≡ 0, the thermody-
namic equilibrium conditions reduce to

xe = xp xn = xp . (C.0.22)

The first equation contradicts the local neutrality condition ne = np, which
in terms of the normalized Fermi momentum reads
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me xe = mp xp , (C.0.23)

while the second one appears to be impossible to achieve due to the dif-
ference between the neutron mass and the proton one. Therefore, the only
possible solution to this case is

ne = np = nn = 0 . (C.0.24)

Numerical Integration of the Equations.
Using the Eqs. (C.0.19) the normalized Fermi momenta xi can be written

as a function of the Coulomb potential ϕ and the metric function ν, thus we
need to integrate only the equations regarding the functions λ, ν and ϕ.

We perform the numerical integration of the Einstein-Maxwell system (C.0.4-
C.0.7) up to the point where the mass density reaches the so-called melting
density (ρm ≈ 2 × 1014 g cm−3) (69), below which the system cannot be
considered as a liquid of electrons, protons and neutrons, and another EOS
should be considered (25; 26).

As we have seen from the equilibrium equations, the system will have a
net charge at every point of the configuration, also at the melting point, so
up to this point we have a charged core. In order to obtain a globally neutral
core, we will apply the procedure of Ruffini et al. (1). From the melting point
we perform an integration on a very small scale, of the order of the electron
Compton wavelength, where obviously gravity does not play any role. On
this small region we maintain the proton number density constant at its value
on the melting density point. In this region the electric field increases due
to the charge separation (the electron number density decreases while the
proton one holds constant). After certain radius the proton number density
is dropped to zero while the electron one is integrated with continuity until
global neutrality is reached.

It is worth noticing that if we drop immediately the proton number to zero
at the melting density point and continue the integration with the electron gas
is impossible to reach global neutrality, because the boundary conditions are
not satisfied (a small change in the electron density of the external shell pro-
duce a large electric field while the electric field at the melting point would be
very small, producing a discontinuity in the first derivative of the Coulomb
potential).

Below we show the numerical results for the central conditions ρc ≈ 1.32×
1014 g cm−3 and Pc ≈ 6.5 × 1034 dyn cm−2. The red line corresponds to the
melting density point.

Results.
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Figure C.1.: Mass of the Core as function of the radius.
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Figure C.2.: Electric Field in the Core as function of the radius.
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Figure C.3.: Charge of the Core as function of the radius.
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Figure C.4.: Coulomb potential energy of the Core as function of the radius.
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Figure C.5.: Number density of electrons and protons in the Core as function
of the radius.
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Figure C.6.: Number density of neutrons in the Core as function of the radius.
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Figure C.7.: Mass density of the Core as function of the radius.
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Figure C.8.: Pressure of the Core as function of the radius.
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Figure C.9.: Electric Field of the Shell as function of the radius.
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Figure C.10.: Number density of electrons and protons in the Shell as function
of the radius.

359



C. On the Generalization of the Oppenheimer–Volkoff Model of Neutron
Stars

360



D. The Outer Crust of Neutron
Stars

The General Relativistic Model. The Outer Crust of Neutron Stars is the region
of Neutron Stars characterized by a mass density less than the “neutron drip”
density ρdrip = 4.3 · 1011g cm−3 (69) and composed by White Dwarf - like ma-
terial (fully ionized nuclei and free electrons). Its internal structure can be
described by the Tolman-Oppenheimer-Volkoff (TOV) equation

dP
dr

= −
G
(

ρ + P
c2

) (
m + 4πr3P

c2

)
r2
(

1− 2Gm
rc2

) , (D.0.1)

together with the equation
dm
dr

= 4πr2ρ, (D.0.2)

where m, ρ and P are the mass, the density and the pressure of the system.
We have determined Mcrust and ∆Rcrust by integrating eq. (D.0.1) and (D.0.2)
from rin = Ris, where Ris is the radius of the inner part of the star (the base of
the Outer Crust).
The pressure and the mass density of the system are

P ≈ Pe, (D.0.3)

ρ ≈ µemnne. (D.0.4)

Pe is the pressure of electrons, given by (70)

Pe = ke φe, (D.0.5)

where

ke =
mec2

8π2λ3
e

, (D.0.6)

φe = (D.0.7)

ξe

(
2
3

ξ2
e − 1

)√
ξ2

e − 1 + log
(

ξe +
√

ξ2
e − 1

)
, (D.0.8)
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with λe the Compton wavelenght of electrons, ξe =
√

1 + x2
e and xe the

Fermi momentum of electrons normalized to (mec). µe is the mean molecular
weight per electron that, for a completely ionized element of atomic weight
A and number Z, is equal to A/Z (for simplicity, we assume µe = 2), mn is
the mass of neutrons and ne is the number density of electrons

ne =
x3

e
3π2λ3

e
. (D.0.9)

In eq. (D.0.4) we have assumed the local charge neutrality of the system.

The mass and the thickness of the crust. We have integrated eq. (D.0.1) and
(D.0.2) for different sets of initial conditions; in fig. D.1 are shown the results
obtained assuming

10 km ≤ Ris ≤ 20 km,
1M� ≤ Mis ≤ 3M�

and an initial pressure equal to 1.6 1030dyne cm−2, that corresponds to a mass
density equal to ρdrip.
It can be seen that Mcrust has values ranging from 10−6M� to 10−3M�; both
Mcrust and ∆Rcrust increase by increasing Ris and decreasing Mis (see fig. D.1,
D.2).

It’s important to note that the values estimated for Mcrust strongly depend
on the values of Mis and Ris used; in particular, the values of Mis considered
are greater that the maximum mass calculated for neutrons stars with a core
of degenerate relativistic electrons, protons and neutrons in local charge neu-
trality (Mmax = 0.7M� (22)). The outstanding theoretical problem to address
is to identify the physical forces influencing such a strong departure; the two
obvious candidate are the electromagnetic structure in the core and/or the
strong interactions.

The Fireshell Model of GRBs. In the Fireshell Model (8) GRBs are generated
by the gravitational collapse of the star progenitor to a charged black hole.
The electron–positron plasma created in the process of black hole (BH) for-
mation expands as a spherically symmetric “fireshell”. It evolves and en-
counters the baryonic remnant of the star progenitor of the newly formed BH,
then is loaded with baryons and expands until the trasparency condition is
reached and the Proper - GRB is emitted. The afterglow emission starts due
to the collision between the remaining optically thin fireshell and the Circum-
Burst Medium. A schematization of the model is shown in fig. D.3.
The baryon loading is measured by the dimensionless quantity

B =
MBc2

Edya
, (D.0.10)
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GRB MB/M�
970228 5.0× 10−3

050315 4.3× 10−3

061007 1.3× 10−3

991216 7.3× 10−4

011121 9.4× 10−5

030329 5.7× 10−5

060614 4.6× 10−6

060218 1.3× 10−6

Table D.1.: GRBs and correspondent values of MB used to reproduce the ob-
served data within the Fireshell Model (71), in units of solar masses.

where MB is the mass of the baryonic remnant and Edya is the energy of the
dyadosphere, the region outside the horizon of a BH where the electric field
is of the order of the critical value for electron positron pair creation (16), (34)
and (35)

Ec =
m2

e c3

eh̄
≈ 1016 V cm−1. (D.0.11)

B and Edya are the two free parameters of the model.
The mass of the crust and MB. Using the values of B and Edya constrained

by the observational data of several GRBs (71) and eq. (D.0.10), we have
obtained the correspondent values of MB (see table D.1). It can be seen that
these values are compatible with the ones of Mcrust.
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Figure D.1.: Values of Mcrust in units of solar masses, as function of Ris, for
different values of Mis (see legend).
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Figure D.2.: Values of thickness of the Outer Crust ∆Rcrust in km, as function
of Ris, for different values of Mis (see legend).
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Figure D.3.: Schematization of the Fireshell Model of GRBs.
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E. The Role of Thomas - Fermi
approach in Neutron Star
Matter

.
Introduction.
We first recall how certainly one of the greatest success in human under-

standing of the Universe has been the research activity started in 1054 by
Chinese, Korean and Japanese astronomers by the observations of a “Guest
Star”(see e.g. Shklovsky (72) ), followed by the discovery of the Pulsar NPO532
in the Crab Nebula in 1967, (see e.g. Manchester and Taylor (73)), still pre-
senting challenges in the yet not identified physical process originating the
expulsion of the remnant in the Supernova explosion (see e.g. Mezzacappa
and Fuller (7) and Fig. E.1(a)). We are currently exploring the neutron star
equilibrium configuration for a missing process which may lead to the solu-
tion of the above mentioned astrophysical puzzle.

We also recall an additional astrophysical observation which is currently
capturing the attention of Astrophysicists worldwide: the Gamma ray Bursts
or for short GRBs. Their discovery was accidental and triggered by a very
unconventional idea proposed by Yacov Borisovich Zel’dovich (see e.g. (74)).
It is likely that this idea served as an additional motivation for the United
States of America to put a set of four Vela Satellites into orbit, 150,000 miles
above the Earth. They were top-secret omnidirectional detectors using atomic
clocks to precisely record the arrival times of both X-rays and γ-rays (see
Fig. E.1(b)). When they were made operational they immediately produced
results ( see Fig. E.1(b)). It was thought at first that the signals originated
from nuclear bomb explosions on the earth but they were much too frequent,
one per day! A systematic analysis showed that they had not originated on
the earth, nor even in the solar system. These Vela satellites had discovered
GRBs! The first public announcement of this came at the AAAS meeting in
San Francisco in a special session on neutron stars, black holes and binary
X-ray sources, organized by Herb Gursky and myself (75).

A few months later, Thibault Damour and myself published a theoretical
framework for GRBs based on the vacuum polarization process in the field of
a Kerr–Newman black hole (19). We showed how the pair creation predicted
by the Heisenberg–Euler–Schwinger theory (16; 35) would lead to a transfor-
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mation of the black hole, asymptotically close to reversibility. The electron–
positron pairs created by this process were generated by what we now call
the blackholic energy (74). In that paper we concluded that this “naturally
leads to a very simple model for the explanation of the recently discovered
GRBs”. Our theory had two very clear signatures. It could only operate for
black holes with mass MBH in the range 3.2–106 M� and the energy released
had a characteristic value of

E = 1.8× 1054MBH/M� ergs . (E.0.1)

Since nothing was then known about the location and the energetics of
these sources we stopped working in the field, waiting for a clarification of
the astrophysical scenario.

The situation changed drastically with the discovery of the “afterglow” of
GRBs (77) by the joint Italian-Dutch satellite BeppoSAX (see Fig. E.1(b)). This
X-ray emission lasted for months after the “prompt” emission of a few sec-
onds duration and allowed the GRB sources to be identified much more ac-
curately. This then led to the optical identification of the GRBs by the largest
telescopes in the world, including the Hubble Space Telescope, the KECK
telescope in Hawaii and the VLT in Chile (see Fig. E.1(b)). Also, the very large
array in Socorro made the radio identification of GRBs possible. The optical
identification of GRBs made the determination of their distances possible.
The first distance measurement for a GRB was made in 1997 for GRB970228
and the truly enormous of isotropical energy of this was determined to be
1054 ergs per burst. This proved the existence of a single astrophysical sys-
tem emitting as much energy during its short lifetime as that emitted in the
same time by all other stars of all galaxies in the Universe!a It is interesting
that this “quantum” of astrophysical energy coincided with the one Thibault
Damour and I had already predicted, see Eq. (E.0.1). Much more has been
learned on GRBs in recent years confirming this basic result ( see e.g. (8)).
The critical new important step now is to understand the physical process
leading to the critical fields needed for the pair creation process during the
gravitational collapse process from a Neutron Stars to a Black Hole.

As third example, we recall the galactic ’X-ray bursters’ as well as some ob-
served X-ray emission precursor of supernovae events (78). It is our opinion
that the solution of: a) the problem of explaining the energetics of the emis-
sion of the remnant during the collapse to a Neutron Star, b) the problem
of formation of the supercritical fields during the collapse to a Black Hole,
c) the less energetics of galactic ’X-ray bursters’ and of the precursor of the
supernovae explosion event, will find their natural explanation from a yet
unexplored field: the electro-dynamical structure of a neutron star. We will
outline a few crucial ideas of how a Thomas-Fermi approach to a neutron star

1Luminosity of average star = 1033 erg/s, Stars per galaxy = 1012, Number of galaxies
= 109. Finally, 33 + 12 + 9 = 54!
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can indeed represent an important step in identify this crucial new feature.
Thomas-Fermi model.
We first recall the basic Thomas-Fermi non relativistic Equations (see e.g.

Landau and Lifshitz (79) ). They describe a degenerate Fermi gas of Nel elec-
trons in the field of a point-like nucleus of charge Ze. The Coulomb potential
V(r) satisfies the Poisson equation

∇2V(r) = 4πen, (E.0.2)

where the electron number density n(r) is related to the Fermi momentum
pF by n = p3

F/(3π2h̄3). The equilibrium condition for an electron, of mass

m, inside the atom is expressed by p2
F

2m − eV = EF. To put Eq. (E.0.2) in
dimensionless form, we introduce a function φ, related to Coulomb potential

by φ(r) = V(r) + EF
e = Ze χ(r)

r . Assuming r = bx, with b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , we
then have the universal equation (41; 42)

d2χ(x)
dx2 =

χ(x)3/2

x1/2 . (E.0.3)

The first boundary condition for this equation follows from the request that
approaching the nucleus one gets the ordinary Coulomb potential therefore
χ(0) = 1. The second boundary condition comes from the fact that the num-
ber of electrons Nel is 1− Nel

Z = χ(x0)− x0χ′(x0).
White dwarfs and Neutron Stars as Thomas-Fermi systems.
It was at the 1972 Les Houches organized by Bryce and Cecille de Witt

summer School (see Fig. E.2(a) and (80)) that, generalizing a splendid pa-
per by Landau (81), I introduced a Thomas-Fermi description of both White
Dwarfs and Neutron Stars within a Newtonian gravitational theory and de-
scribing the microphysical quantities by a relativistic treatment. The equilib-
rium condition for a self-gravitating system of fermions, in relativistic regime

is c
√

p2
F + m2

nc2 −mnc2 −mnV = −mnV0, where pF is the Fermi momentum

of a particle of mass mn, related to the particle density n by n = 1
3π2h̄3 p3

F. V(r)
is the gravitational potential at a point at distance r from the center of the
configuration and V0 is the value of the potential at the boundary Rc of the
configuration V0 = GNmn

Rc
. N is the total number of particles. The Poisson

equation is ∇2V = −4πGmnn. Assuming V − V0 = GNmn
χ(r)

r and r = bx,

with b = (3π)2/3

27/3
1

N1/3

(
h̄

mnc

) (
mPlanck

mn

)2
we obtain the gravitational Thomas-

Fermi equation

d2χ

dx2 = −χ3/2
√

x

[
1 +

(
N
N∗

)4/3 χ

x

]3/2

, (E.0.4)
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where N∗ =
(3π

4

)1/2
(

mPlanck
mn

)3
. Eq.(E.0.4) has to be integrated with the

boundary conditions χ(0) = 0, −xb

(
dχ
dx

)
x=xb

= 1. Eq. (E.0.4) can be ap-

plied as well to the case of white dwarfs.

It is sufficient to assume

b =
(3π)2/3

27/3
1

N1/3

(
h̄

mec

)(
mPlanck

µmn

)2

,

N∗ =
(

3π

4

)1/2(mPlanck
µmn

)3

,

M =
∫ Rc

0
4πr2ne(r)µmndr.

For the equilibrium condition c
√

p2
F + m2c2 − mc2 − µmnV = −µmnV0, in

order to obtain for the critical mass the value Mcrit ≈ 5.7Msunµ−2
e ≈ 1.5Msun.

The relativistic Thomas-Fermi equation.

In the intervening years my attention was dedicated to an apparently aca-
demic problem: the solution of a relativistic Thomas-Fermi Equation and
extrapolating the Thomas-Fermi solution to large atomic numbers of Z ≈
104 − 106. Three new features were outlined: a) the necessity of introduc-
ing a physical size for the nucleus, b) the penetration of the electrons in the
nucleus, c) the definition of an effective nuclear charge (15; 18). The elec-
trostatic potential is given by ∇2V(r) = 4πen, where the number density

of electrons is related to the Fermi momentum pF by n = p3
F

3π2h̄3 . In order

to have equilibrium we have c
√

p2
F + m2c2 − mc2 − eV(r) = EF. Assum-

ing φ(r) = V(r) + EF
e = Ze χ(r)

r , Zc =
(3π

4

)1/2
(

h̄c
e2

)3/2
, and r = bx, with

b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , the Eq. (E.0.3) becomes

d2χ(x)
dx2 =

χ(x)3/2

x1/2

[
1 +

(
Z
Zc

)4/3 χ(x)
x

]3/2

. (E.0.5)

The essential role of the non-pointlike nucleus.

The point-like assumption for the nucleus leads, in the relativistic case, to
a non-integrable expression for the electron density near the origin. We as-
sumed a uniformly charged nucleus with a radius rnuc and a mass number A
given by the following semi-empirical formulae

rnuc = r0A1/3, r0 ≈ 1.5× 10−13cm, (E.0.6)
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Z '
[

2
A

+
3

200
1

A1/3

]−1

, (E.0.7)

Eq.(E.0.5) then becomes

d2χ(x)
dx2 =

χ(x)3/2

x1/2

[
1 +

(
Z
Zc

)4/3 χ(x)
x

]3/2

− 3x
x3

nuc
θ(xnuc − x), (E.0.8)

where θ = 1 for r < rnuc, θ = 0 for r > rnuc, χ(0) = 0, χ(∞) = 0.
Eq.(E.0.8) has been integrated numerically for selected values of Z (see

Fig. E.2(b) and (15; 18)). Similar results had been obtained by Greiner and
his school and by Popov and his school with special emphasis on the exis-
tence of critical electric field at the surface of heavy nuclei. Their work was
mainly interested in the study of the possibility of having process of vacuum
polarization at the surface of heavy nuclei to be possibly achieved by heavy
nuclei collisions (see for a review (83)). Paradoxically at the time we were not
interested in this very important aspect and we did not compute the strength
of the field in our relativistic Thomas-Fermi model which is indeed of the
order of the Critical Field Ec = m2c3/eh̄ .

Nuclear matter in bulk: A ≈ 300 or A ≈ (mPlanck/mn)3.
The situation clearly changed with the discovery of GRBs and the under-

standing that the process of vacuum polarization unsuccessfully sought in
earthbound experiments could indeed be observed in the process of forma-
tion of a Black Hole from the gravitational collapse of a neutron star (83). The
concept of a Dyadosphere, (84; 85), was introduced around an already formed
Black Hole and it became clear that this concept was of paramount impor-
tance in the understanding the energy source fo GRBs. It soon became clear
that the initial conditions for such a process had to be found in the electro-
dynamical properties of neutron stars. Similarly manifest came the crucial
factor which had hampered the analysis of the true electro dynamical prop-
erties of a neutron star; the unjustified imposition of local charge neutrality
as opposed to the global charge neutrality of the system. We have therefore
proceeded to make a model of a nuclear matter core of A ≈ (mPlanck/mn)3

nucleons (1). We generalized to this more general case the concept intro-
duced in their important work by W. Greiner and V. Popov ( see Fig. E.3(a)
and Fig. E.3(b) ) as follows.

I have assumed that the proton number density is constant inside the core
r ≤ Rc and vanishes outside the core r > Rc:

np =
1

3π2h̄3 (PF
p )3 =

3Np

4πR3
c

θ(Rc − r), Rc = ∆
h̄

mπc
N1/3

p ,

where PF
p is the Fermi momentum of protons, θ(Rc− r) is the step-function
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and ∆ is a parameter. The proton Fermi energy is

Ep(PF
p ) = [(PF

p c)2 + m2
pc4]1/2 −mpc2 + eV, (E.0.9)

where e is the proton charge and V is the Coulomb potential. Based on the
Gauss law, V(r) obeys the Poisson equation ∇2V(r) = −4πe

[
np(r)− ne(r)

]
and boundary conditions V(∞) = 0, V(0) = f inite, where the electron
number density ne(r) is given by

ne(r) =
1

3π2h̄3 (PF
e )3, (E.0.10)

being PF
e the electron Fermi momentum. The electron Fermi energy is

Ee(PF
e ) = [(PF

e c)2 + m2c4]1/2 −mc2 − eV. (E.0.11)

The energetic equation for an electrodynamic equilibrium of electrons in
the Coulomb potential V(r) is Ee(PF

e ) = 0, hence the Fermi momentum and
the electron number density can be written as

ne(r) =
1

3π2h̄3c3

[
e2V2(r) + 2mc2eV(r)

]3/2
.

Introducing the new variable x = r/(h̄/mπc) ( the radial coordinate in
unit of pion Compton length (h̄/mπc), xc = x(r = Rc)), I have obtained the
following relativistic Thomas-Fermi Equation ( (86; 66)):

1
3x

d2χ(x)
dx2 = −α

{
1

∆3 θ(xc − x)− 4
9π

[
χ2(x)

x2 + 2
m

mπ

χ

x

]3/2}
, (E.0.12)

where χ is a dimensionless function defined by χ
r = eV

ch̄ and α is the fine
structure constant α = e2/(h̄c). The boundary conditions of the function
χ(x) are χ(0) = 0 , χ(∞) = 0 and Ne =

∫ ∞
0 4πr2drne(r). Instead of using

the phenomenological relation between Z and A, given by Eqs. (E.0.6) and
(E.0.7), we determine directly the relation between A and Z by requiring the
β-equilibrium

En = Ep + Ee. (E.0.13)

The number-density of degenerate neutrons is given by nn(r) = 1
3π2h̄3 (PF

n )3,
where PF

n is the Fermi momentum of neutrons. The Fermi energy of degener-
ate neutrons is

En(PF
n ) = [(PF

n c)2 + m2
nc4]1/2 −mnc2, (E.0.14)

where mn is the neutron mass. Substituting Eqs. (E.0.9, E.0.11, E.0.14) into
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Eq. (E.0.13), we obtain [(PF
n c)2 + m2

nc4]1/2 − mnc2 = [(PF
p c)2 + m2

pc4]1/2 −
mpc2 + eV. These equations and boundary conditions form a close set of non-
linear boundary value problem for a unique solution for Coulomb potential
V(r) and electron distribution (E.0.10), as functions of the parameter ∆, i.e.,
the proton number-density np. The solution is given in Fig. E.4(a). A relevant
quantity for exploring the physical significance of the solution is given by
the number of electrons within a given radius r, Ne(r) =

∫ r
0 4π(r′)2ne(r′)dr′.

This allows to determine, for selected values of the A = Np + Nn parameter,
the distribution of the electrons within and outside the core and follow the
progressive penetration of the electrons in the core at increasing values of A
( see Fig. E.4(b)). We can then evaluate, generalizing the results in (15; 18) ,
the net charge inside the core Nnet = Np − Ne(Rc) < Np, and consequently
determine of the electric field at the core surface, as well as within and outside
the core (see Fig. E.5).

The energetically favorable configurations.

Introducing the new function φ defined by φ = ∆
[

4
9π

]1/3
χ
x , and putting

x̂ = ∆−1√α (12/π)1/6 x, ξ = x̂− x̂c the ultra-relativistic Thomas-Fermi equa-
tion can be written as

d2φ̂(ξ)
dξ2 = −θ(−ξ) + φ̂(ξ)3, (E.0.15)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c � 0 (at massive core center) and φ̂(ξ)→ 0 as ξ → ∞. We must also
have the continuity of the function φ̂ and the continuity of its first derivative
φ̂′ at the surface of massive core ξ = 0 .
Eq. (E.0.15) admits an exact solution

φ̂(ξ) =

 1− 3
[
1 + 2−1/2 sinh(a−

√
3ξ)
]−1

, ξ < 0,
√

2
(ξ+b) , ξ > 0,

(E.0.16)

where integration constants a and b are: sinh a = 11
√

2, a = 3.439; b =
(4/3)

√
2.

We than have for the Coulomb potential energy, in terms of the variable ξ,

eV(ξ) =
(

1
∆3

9π
4

)1/3
mπc2φ̂(ξ), and at the center of massive core eV(0) =

h̄c(3π2np)1/3 =
(

1
∆3

9π
4

)1/3
mπc2, which plays a fundamental role in order to

determine the stability of the configuration.
It is possible to compare energetic properties of different configurations sat-
isfying the different neutrality conditions ne = np and Ne = Np, with the
same core radius Rc and total nucleon number A. The total energy in the case
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ne = np is

Eloc
tot = ∑

i=e,p,n
Ei

loc,

Ei
loc = 2

∫ d3rd3p
(2πh̄)3 εi

loc(p) =

cVc

8π2h̄3

{
P̄F

i [2(P̄F
i )2 + (mic)2][(P̄F

i )2 + (mic)2]1/2 − (mic)4Arsh

(
P̄F

i
mic

)}

The total energy in the case Ne = Np is

E
glob
tot = Eelec + Ebinding + ∑

i=e,p,n
Ei

glob

Eelec =
∫ E2

8π
d3r ≈ 33/2π1/2

4
N2/3

p√
α∆c

mπ

∫ +∞

−κRc
dx
[
φ′(x)

]2
Ebinding = −2

∫ d3rd3p
(2πh̄)3 eV(r) ≈ − Vc

3π2h̄3 (PF
e )3eV(0)

Ei
glob = 2

∫ d3rd3p
(2πh̄)3 εi

glob(p) =

cVc

8π2h̄3

{
PF

i [2(PF
i )2 + (mic)2][(PF

i )2 + (mic)2]1/2 − (mic)4Arsh

(
PF

i
mic

)}
.

We have indicated with P̄F
i (i = n, e, p) the Fermi momentum in the case

of local charge neutrality (V = 0) and with PF
i ( i = n, e, p) the Fermi mo-

mentum in the case of global charge neutrality (V 6= 0). The energetic differ-
ence between local neutrality and global neutrality configurations is positive,
∆E = Eloc

tot −E
glob
tot > 0, so configurations which obey to the condition of global

charge neutrality are energetically favorable with respect to one which obey
to the condition of local charge neutrality (86; 87). For a core of 10 Km the
difference in binding energy reaches 1049 ergs which gives an upper limit to
the energy emittable by a neutron star, reaching its electrodynamical ground
state.
The current work is three fold: a) generalize our results considering the heavy
nuclei as special limiting cases of macroscopic nuclear matter cores (66), b)
describe a macroscopic nuclear matter core within the realm of General Rela-
tivity fullfilling the generalized Tolman, Oppenheimer, Volkoff equation (88),
c) Generalyze the concept of a Dyadosphere to a Kerr-Newman Geometry
(89).

Conclusions.
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It is clear that any neutron star has two very different components: the
core with pressure dominated by a baryonic component and the outer crust
with pressure dominated by a leptonic component and density dominated by
the nuclear species. The considerations that we have presented above apply
to the first component where the baryonic pressure dominates. It is clear
that when the density increases and baryons become ultra-relativistic is this
baryonic component which undergoes the process of gravitational collapse
and its dynamics is completely dominated by the electrodynamical process
which we have presented in this talk.
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(a)

(b)

Figure E.1.: (a) The expanding shell of the remnant of the Crab Nebulae as ob-
served by the Hubble Space Telescope. Reproduced from Hubble Telescope
web site with their kind permission (News Release Number: STScl-2005-37).
(b) On the upper left the Vela 5A and 5B satellites and a typical event as
recorded by three of the Vela satellites; on the upper right the Compton satel-
lite and the first evidence of the isotropy of distribution of GRB in the sky; on
the center left the Beppo Sax satellite and the discovery of the after glow; on
the center right a GRB from Integral satellite; in the lower part the Socorro
very large array radiotelescope ,the Hubble, the Chandra and the XMM tele-
scopes, as well as the VLT of Chile and KECK observatory in Hawaii. All
these instruments are operating for the observations of GRBs (76).
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(a)

(b)

Figure E.2.: (a) Lunch at Les Louces summer school on ’Black Holes’. In front,
face to face, Igor Novikov and the author; in the right the title of the book in
English and in French. It is interesting that in that occasion Cecile de Witt
founded the French translation of the word ’Back Hole’ in ’Trou Noir’ objec-
tionable and she introduced instead the even more objectionable term ’As-
tres Occlus’. The French neverthless happily adopted in the following years
the literally translated word ’Trou Noir’ for the astrophysical concept I intro-
duced in 1971 with J.A. Wheeler ((82)). (b) The number of electrons contained
within a distance x of the origin, as a function of the total number Z for a neu-
tral atom. The lowest curve is that given by the solution of the non-relativistic
Thomas-Fermi equation.
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(a)

(b)

Figure E.3.: (a) Vladimir Popov discussing with the author and Professors She
Sheng Xue and Gregory Vereshchagin (Roma 2007). Also quoted the classical
contributions of Popov and his school. (b) Walter Greiner and the citation of
classical papers by him and his school.
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Figure E.4.: (a) The solution χ of the relativistic Thomas-Fermi Equation for
A = 1057 and core radius Rc = 10km, is plotted as a function of radial coordi-
nate. The left solid line corresponds to the internal solution and it is plotted
as a function of radial coordinate in unit of Rc in logarithmic scale. The right
dotted line corresponds to the solution external to the core and it is plotted
as function of the distance ∆r from the surface in the logarithmic scale in cen-
timeter. (b) The electron number in the unit of the total proton number Np,
for selected values of A, is given as function of radial distance in the unit of
the core radius Rc, again in logarithmic scale. It is clear how by increasing the
value of A the penetration of electrons inside the core increases.
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Figure E.5.: The electric field in the unit of the critical field Ec is plotted
around the core radius Rc. The left (right) solid (dotted) diagram refers to
the region just inside (outside) the core radius plotted logarithmically. By
increasing the density of the star the field approaches the critical field.
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[17] E. Segré, “Nuclei and Particles”, Second Edition, W. A. Benjamin 1977.

[18] R. Ruffini and L. Stella, Phys. Lett. B 102, 442 (1981).

[19] T. Damour and R. Ruffini, Phys. Rev. Lett. 35, 463 (1975).

381



Bibliography

[20] R. P. Kerr, Phys. Rev. Lett. 11, 273 (1963).

[21] A. G. Aksenov, R. Ruffini and G. V. Vereshchagin, Phys. Rev. Lett. 99,
125003 (2007).

[22] R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

[23] B. K. Harrison et al., “Gravitational theory and gravitational collapse,”
(University of Chicago Press, Chicago, 1965).

[24] G. Baym, H. A. Bethe and C. J. Pethick, Nuc. Phys. A 175, 225 (1971).

[25] B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini., in Proceedings
of the Fifth Italian-Sino Workshop, D. Lee, W. Lee, S.-S. Xue (eds.), AIP
Conf. Proc., Vol. 1059, pp. 68-71 (2008).

[26] B. Patricelli, J. A. Rueda H. and R. Ruffini, in Proceedings of the Third
Stueckelberg Workshop, G. Montani and G. W. Vereshchagin (eds.),
(World Scientific, 2008, in preparation).

[27] J. A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini and S. S. Xue, in
Proceedings of the Third Stueckelberg Workshop, G. Montani and G. W.
Vereshchagin (eds.), (World Scientific, 2008, in preparation).
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