ICRANet Newsletter
Octobre – Novembre 2018
1. A GRB afterglow model consistent with hypernovae observations
The paper with this title co-authored by R. Ruffini, M. Karlica, N. Sahakyan, J.A. Rueda, Y. Wang, G.J. Mathews, C.L. Bianco and M. Muccino has been accepted for publication by the Astrophysical Journal (ApJ) on October 21, 2018.
In this paper our group presents an important paradigm shift in contrast to the traditional ultrarelativistic external shock scenario of the GRB afterglows which can be found in most of traditional literature. For our first investigation we used data of famous GRB 130427A with time resolved afterglow observations from radio till GeV band in timeframe from 604 till 5184000 seconds after the trigger. From model independent measurements for GRB 130427A of thermal emission expansion from 196 till 461 seconds after trigger with inferred velocity v/c~0.95 and corresponding Lorentz factor Γ~3 which decays after 16.7 days toward v/c~0.1 based of FeII 5169 measurements it was clear that the traditional ultrarelativistic scenario could not be used for description of afterglow.
Another novelty of this paper is the build up of synchrotron radiation within hypernova ejecta magnetized by the newly born neutron star as expected by the BdHN model of long GRBs. Following the geometry and strength of the newly born pulsar’s magnetic field together with the mildly relativistic expansion of hypernova ejecta it was possible to asses and solve the kinetic equation for radiating electrons giving us the spectral evolution of synchrotron radiation which fit genuinely well with observed time resolved spectra of GRB 130427A as shown on figure 1.
Fig. 1. Model evolution (lines) of synchrotron spectral luminosity at various times compared with measurements (points with error bars) in various spectral bands for GRB 130724A.
Analysis presented in this paper goes more in line with the long GRB-SN connection cause all of the known supernovae associated with long GRBs, among them SN 2013cq associated with GRB 130427A, are broad lined type Ic supernovae indicating a binary system progenitor what is also expected by BdHN GRB model. Also it stresses the importance of model independent expansion velocity measurements of GRBs in afterglow phase which are an crucial ingredient in understanding of the astrophysical system and their subsequent theoretical treatment.
The paper is available here: https://arxiv.org/abs/1712.05000
2. Nouveau Accord de Collaboration entre l’Université Campus Bio-Medico de Rome et ICRANet, 11 Octobre 2018
La cérémonie officielle qui a eu lieu le 14 Novembre 2018 auprès du siège de l’Université Campus Bio-Medico. De gauche à droite: Prof. Simonetta Filippi, le Président Raffaele Calabrò, le Dr Benedetto Marino, le Prof. Marco Tavani, le Prof. Remo Ruffini, le Prof. Paolo Giommi et le Prof. Christian Cherubini.
Le 11 Octobre 2018, l’ ICRANet a signé un Accord de Collaboration avec l’Université Campus Bio-Medico de Rome – Italie, qui qui demeurera valide pour 2 années. Le document a été signé par le Prof.
Raffaele Calbrò (Président) et par Dr Andrea Rossi (Directeur Général) pour ‘Université Cmpus Bio-Medico, et par le Prof. Ruffini, Directeur d’ ICRANet.
Pour célébrer la signature de l’accord, l’Université Campus Bio-Medico a organisé une cérémonie officielle dans son siège à Rome, le Mercredi 14 Novembre 2018, à la présence du Prof. Ruffini
(Directeur d’ICRANet), de Raffaele Calabrò (Président du Campus Bio-Medico), de la Prof. Simonetta Filippi (Campus Bio-Medico), du Prof. Christian Cherubini (Campus Bio-Medico), du Prof. Paolo
Giommi (ASI), du Prof. Marco Tavani (INAF) et du Dr. Benedetto Marino.
Les principales activités conjointes qui seront développées dans le cadre de cet accord comptent: la promotion des activités de recherche et d'observation dans le champ de l’astrophysique relativiste; la collaboration entre des membres de la Faculté, des chercheurs, des post-doctorat fellows et des étudiants; l’organisation de séminaires, conférences, workshops, cours de formations et de recherche, et publications conjointes.
Pour consulter le texte de l’accord:
http://www.icranet.org/documents/agreementICRANet-CampusBiomedico.pdf
3. 13th réunion du Marie Skłodowska-Curie actions’ Advisory Group, Bruxelles, 7 Novembre 2018
Le 7 Novembre 2018, le Professeur Ruffini a participé à la 13ème réunion du MarieSkłodowska-Curie actions’ Advisory Group à Bruxelles. Le MSCA soutien financièrement les chercheurs à tous les points de leur carrières, sans distinction de nationalité et discipline. Le financements peuvent être attribué à des chercheurs individuels, à des groups, à des programs d’échange pour le staff et pour les programmes de doctorat/PhD. En plus, le MSCA donne la possibilité aux scientifiques de gagner expérience internationale, intersectorielle et interdisciplinaire, ainsi que compléter leur parcours avec beaucoup de compétences, qui favoriseront leur employabilité et leur perspective de carrière.
Pendant cette réunion, l’ Horizon 2020 (H2020) Advisory Group du Marie Skłodowska Curie Actions a travaillé à la préparation d’un rapport final concentré sur la partie 2020 du H2020 Working Programme (WP) pour la période 2018-2020. Un rapport final plus complet sera rédigé l’année prochaine.
Pour informations supplémentaires sur le MSCA Advisory Group:
http://ec.europa.eu/research/mariecurieactions/
4. UNOOSA High Level Forum: The way forward after UNISPACE+50 and on Space2030, Bonn, Germany 13 - 16 November 2018
Photo de groupe du Forum de haut niveau UNOOSA à Bonn, Allemagne
Du 13 au 16 Novembre 2018, le Professeur Ruffini, Directeur d’ICRANet, a participé au High Level Forum “The way forward after UNISPACE+50 and on Space2030”, organizé par le Bureau des affaires spatiales des Nations unies (UNOOSA) et par le Centre allemand pour l'aéronautique et l'astronautique (DLR).
Ce forum de haut niveau a été une important opportunité pour donner des mises à jour et des recommandations sur le potentiel des innovations spatiales pour répondre au nouveaux enjeux émergents du
développement durable. En tant que premier forum de haut niveau après UNISPACE+50, ce meeting a représenté une opportunité pour discuter des résultats de UNISPACE+50, à travers 2 journées de session sur les priorités thématiques, suivies par 2 journées des débats de haut niveau concentrés sur les 4 piliers : Space Diplomacy, Space Society, Space Economy and Space Accessibility.
Pendant ce meeting, le Professeur Ruffini a présenté son poster, titlé “The Role of Space Sciences for Relativistic Astrophysics in the knowledge of our Universe”, qui montrait les derniers résultats scientifiques obtenus par les chercheurs d’ICRANet.
5. Appel à propositions conjointes “BRFFR – ICRANet – 2018”
En Novembre 2018, la Belarusian Republican Foundation for
Fundamental Research (BRFFR) et ICRANet ont annoncé un
appel à propositions pour projets scientifiques conjointes dan le
domain de l’Astrophysique Relativiste.
Les domaines scientifiques couverts par cet appel sont l’Astrophysique relativiste, la cosmologie et la gravitation. Les candidatures des équipes de recherché internationales, y compris ces des scientifiques bélarussiens, doivent être présentées en utilisant des formulaires de demande convenus par les 2 organisations : les équipes bélarussiennes postulent pour la BRFFR, tandis-que les autres équipes internationales postulent pour ICRANet. La durée des projets est jusqu’à 2 années, et la date limite pour envoyer les candidatures est le 14 Décembre 2018.
Pour informations supplémentaires sur l’appel à propositions et pour télécharger le formulaire de demande:
http://www.icranet.org/index.php?option=com_content&task=view&id=1218
Des informations plus détaillées pour les candidats bélarussiens sont disponibles sur le site web de la BRFFR (en Russe):
http://fond.bas-net.by/if264.html.
Informations pour les candidats ICRANet:
http://www.icranet.org/documents/general_terms.pdf
6. Visites scientifiques auprès du centre ICRANet de Pescara
Somayyeh Mahmoudikooshkeqazi et Saeidehalsadat Modaresvamegh.
Du 3 Novembre au 7 Décembre 2018, 2 étudiantes iraniennes de la Shiraz University ont visité le centre ICRANet de Pescara: Somayyeh Mahmoudikooshkeqazi et Saeidehalsadat Modaresvamegh. Pendant leur
visite, elles ont eu l’opportunité de discuter de leur travaux de recherché et d’avoir des intéressants échanges d’opinion avec les autres chercheurs ICRANet de toutes les parties du monde.
7. Publications récentes
J. A. Rueda, R. Ruffini, L. M. Becerra, C. L. Fryer, Simulating the induced gravitational collapse scenario of long gamma-ray bursts, International Journal of Modern Physics A, Volume 33, Issue 31, id. 1844031 (2018), published on 19 November 2018.
We present the state-of-the-art of the numerical simulations of the supernova (SN) explosion of a carbon-oxygen core (COcore) that forms a compact binary with a neutron star (NS) companion, following the induced gravitational collapse (IGC) scenario of long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). We focus on the consequences of the hypercritical accretion of the SN ejecta onto the NS companion which either becomes a more massive NS or gravitationally collapses forming a black hole (BH). We summarize the series of results on this topic starting from the first analytic estimates in 2012 all the way up to the most recent three-dimensional (3D) smoothed-particle-hydrodynamics (SPH) numerical simulations in 2018. We present a new SN ejecta morphology, highly asymmetric, acquired by binary interaction and leading to well-defined, observable signatures in the gamma- and X-rays emission of long GRBs.
Link: https://www.worldscientific.com/doi/abs/10.1142/S0217751X18440311
M. A. Prakapenia, I. A. Siutsou, G. V. Vereshchagin, Thermalization of electron–positron plasma with quantum degeneracy, Physics Letters A, available online from 25 October 2018, in press.
The non-equilibrium electron–positron–photon plasma thermalization process is studied using relativistic Boltzmann solver, taking into account quantum corrections both in non-relativistic and relativistic cases. Collision integrals are computed from exact QED matrix elements for all binary and triple interactions in the plasma. It is shown that in non-relativistic case (temperatures kBT ≤ 0.3 mec2) binary interaction rates dominate over triple ones, resulting in establishment of the kinetic equilibrium prior to final relaxation towards the thermal equilibrium, in agreement with the previous studies. On the contrary, in relativistic case (final temperatures kBT ≥ 0.3 mec2) triple interaction rates are fast enough to prevent the establishment of kinetic equilibrium. It is shown that thermalization process strongly depends on quantum degeneracy in initial state, but does not depend on plasma composition.
Link: https://www.sciencedirect.com/science/article/abs/pii/S0375960118310594
Ruffini, R.; Becerra, L.; Bianco, C. L.; Chen, Y. C.; Karlica, M.; Kovacevic, M.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S., On the ultra-relativistic Prompt Emission (UPE), the Hard and Soft X-ray Flares, and the extended thermal emission (ETE) in GRB 151027A, accepted for publication in The Astrophysical Journal on 3 November 2018.
We analyze GRB 151027A within the binary-driven hypernova (BdHN) approach, with progenitor a carbon-oxygen core on the verge of a supernova (SN) explosion and a binary companion neutron star (NS). The hypercritical accretion of the SN ejecta onto the NS leads to its gravitational collapse into a black hole (BH), to the emission of the GRB and to a copious e+e− plasma. The impact of this e+e− plasma on the SN ejecta explains the early soft X-ray flare observed in long GRBs. We here apply this approach to the UPE and to the hard X-ray flares. We use GRB 151027A as a prototype. From the time-integrated and the time-resolved analysis we identify a double component in the UPE and confirm its ultra-relativistic nature. We confirm the mildly-relativistic nature of the soft X-ray flare, of the hard X-ray flare and of the ETE. We show that the ETE identifies the transition from a SN to the HN. We then address the theoretical justification of these observations by integrating the hydrodynamical propagation equations of the e+e− into the SN ejecta, the latter independently obtained from 3D smoothed-particle-hydrodynamics simulations. We conclude that the UPE, the hard X-ray flare and the soft X-ray flare do not form a causally connected sequence: Within our model they are the manifestation of the same physical process of the BH formation as seen through different viewing angles, implied by the morphology and the ∼300s rotation period of the HN ejecta.
Link: https://arxiv.org/abs/1712.05001
Ruffini, R.; Karlica, M.; Sahakyan, N.; Rueda, J. A.; Wang, Y.; Mathews, G. J.; Bianco, C. L.; Muccino, M., On a GRB afterglow model consistent with hypernovae observations, accepted for publication in The Astrophysical Journal on 21 October 2018.
We describe the afterglows of the long gamma-ray-burst (GRB) 130427A within the context of a binary-driven hypernova (BdHN). The afterglows originate from the interaction between a newly born neutron star (νNS), created by an Ic supernova (SN), and a mildly relativistic ejecta of a hypernova (HN). Such a HN in turn results from the impact of the GRB on the original SN Ic. The mildly relativistic expansion velocity of the afterglow (Γ∼3) is determined, using our model independent approach, from the thermal emission between 196 s and 461 s. The power-law in the optical and X-ray bands of the afterglow is shown to arise from the synchrotron emission of relativistic electrons in the expanding magnetized HN ejecta. Two components contribute to the injected energy: the kinetic energy of the mildly relativistic expanding HN and the rotational energy of the fast rotating highly magnetized νNS. We reproduce the afterglow in all wavelengths from the optical (1014Hz) to the X-ray band (1019Hz) over times from 604s to 5.18×106 s relative to the Fermi-GBM trigger. Initially, the emission is dominated by the loss of kinetic energy of the HN component. After 105 s the emission is dominated by the loss of rotational energy of the νNS, for which we adopt an initial rotation period of 2~ms and a dipole plus quadrupole magnetic field of ≲7×1012G or ∼1014 G. This scenario with a progenitor composed of a COcore and a NS companion differs from the traditional ultra-relativistic-jetted treatments of the afterglows originating from a single black hole.
Link: https://arxiv.org/abs/1712.05000
|