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LOW AND INTERMEDIATE
MASS STARS



  

NUCLEAR POWER
H & He BURNING Image Credit: David Taylor

If the star is massive enough ( > 0.8 solar masses):

H → He

p-p chain

He → C & O

Triple-α
12C ( α, γ ) 16O



  Image credit: Persson, Magnus Vilhelm (2013)
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Image credit: NASA/Andrew Fruchter (STScI) CO white dwarf (WD)

PLANETARY NEBULAE
& WHITE DWARFS



  

EXPLODING WHITE DWARFS
THERMONUCLEAR SUPERNOVAE

Image credit: NASA/CXC/SAO



  

Artist's impression of Rigel
Image Credit: Adam Burn

MASSIVE STARS



NUCLEAR POWER

Image credit: Alexander Heger Star develops an 'iron' core



  

COLLAPSE OF THE IRON CORE

Image credit: R. J. Hall

Silicon burns into 'iron' in a shell until 
the iron core exceeds the critical 

mass that can be supported by its 
degenerate electron gas: the 

effective Chandrasekhar limit

The core collapses until the central 
region reaches nuclear saturation 
density (~1014 g/cc); The in-falling 

material bounces, launching a shock 
wave; [shock stalling and revival]; 

supernova explosion



  
Image credit: NASA/CXC/SAO

CORE-COLLAPSE SUPERNOVAE
CAS A

Neutron star (NS)



  

SUPER-AGB STARS
“8-10 SOLAR-MASS” STARS

Image credit: Alexander Heger

Nuclear burning is curtailed due to combined effects of 
neutrino losses and degeneracy, leaving an ONe core



Lugaro+ (2012)

SUPER-AGB STARS



  

Assuming a Salpeter IMF, 8—10 solar-mass stars constitute 26 % of all 
massive stars. Probably more (e.g. Jennings+ 2012).

SNe from these stars (electron capture SNe and/or accretion-induced 
collapse of ONe WDs) postulated to explain many observations, 
including:
● Production of Ag and Pd (e.g. Hansen+ 2012)

● Site for r-process (e.g. Cescutti+ 2014, but also Wanajo+ 2011)

● “bimodal” NS mass distribution (e.g. Schwab+ 2010)

● Bimodal BeX orbital eccentricity (e.g. Knigge+ 2011)

● Low L transients (e.g. Thompson+ 2009)

WHY?
WHY STUDY THESE STARS?



  

WHAT HAPPENS TO 8-10
SOLAR-MASS STARS?

Image credit: NASA/Andrew Fruchter (STScI) Image credit: NASA/CXC/SAO



Lugaro+ (2012)

Jones+ (2016)

SUPER-AGB STARS

ENVELOPE

CORE

Rate of mixing between the 
envelope and the core gives a 
core growth rate (solar masses 
per year)

Envelope shedding 
due to stellar winds

time



Lugaro+ (2012)

Two (three) general classical 
scenarios:

1. The H envelope is 
ejected, producing a 
planetary nebula and an 
ONe white dwarf

2. The core grows due to 
accumulation of ash from 
the burning shells, 
eventually exceeding the 
effective Chandrasekhar 
limit and collapsing to a 
neutron star

3. An ONe WD is formed, but 
later accretes from a binary 
companion and collapses to a 
neutron star



  

At about 3e9 g/cc, 24Mg begins to capture electrons, 
inducing a contraction

But it is 20Ne + 2e-, 
activated at about 
1010 g/cc that 
releases enough 
energy to ignite an 
oxygen deflagration 
wave in the centre

The energy release from burning competes with electron 
capture on the ash; in the classical picture the electron 
captures win and the star's core collapses (an electron-
capture supernova; ECSN)

Miyaji+ (1980); Nomoto (1984,1987)



  

WHAT HAPPENS TO 8-10
SOLAR-MASS STARS?

Image credit: NASA/Andrew Fruchter (STScI) Image credit: NASA/CXC/SAO

Determined by balance between convective 
boundary (core-envelope) mixing (uncertain) and 

envelope shedding due to the stellar wind 
(uncertain)



  

MIXING IN STARS
IDEALISED 3D SIMULATIONS TO INFORM 1D MODELS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)



  

MIXING IN STARS
IDEALISED 3D SIMULATIONS WITH PPMstar

In collaboration with: Robert Andrassy, Stou Sandalski, Austin Davis, Paul 
Woodward, Falk Herwig

7683 and 15363 simulations in 4π geometry

O shell burning

2 fluids (μconv = 1.848, μstab = 1.802)

Constant volume heating

Ideal gas EoS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)
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MIXING IN STARS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)

Entrainment rate = 1.33 x 10-6 M☉ s-1



MIXING IN STARS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)



  

MIXING IN STARS
1D MIXING MODEL

S. Jones, RA, SS, AD, PW, FH (2016, ArXiv e-prints, arXiv:1605.03766)

fCBM = 0.03



  

MIXING IN STARS
IMPLICATION FOR CCSN PROGENITORS
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Let's pick up the story again at the ignition of an O 
deflagration wave (sub-sonic flame)



At about 3e9 g/cc, 24Mg begins to capture electrons, 
inducing a contraction

But it is 20Ne + 2e-, 
activated at about 
1e10 g/cc that 
releases enough 
energy to ignite an 
oxygen deflagration 
wave in the centre

The energy release from burning competes with electron 
capture on the ash; in the classical picture the electron 
captures win and the star's core collapses (an electron-
capture supernova; ECSN)

Miyaji+ (1980); Nomoto (1984,1987)



  

WHAT ARE ELECTRON-CAPTURE
SUPERNOVAE?

Image credit: NASA/CXC/SAOImage credit: NASA/CXC/SAO



  

20Ne ELECTRON CAPTURE
RAPID HEATING IGNITES THERMONUCLEAR RUNAWAY

Möller+ (2014)

|Q1| > |Q2|

Martinez-Pinedo+ (2014)



1D SIMULATIONS
AIC of ONe white dwarf
Schwab+ (2015)

24Mg
electron capture

20Ne
electron capture

Central density of the star when the thermonuclear 
runaway (which propagates as a “deflagration”/flame) 

is determined by nuclear physics



WEAK REACTIONS
INTERPOLATION ERRORS
Jones, Bertolli & Johnson (2016, subm.)



  O DEFLAGRATION

In 1D simulations of the O deflagration, neutron stars, 
WDs and thermonuclear SNe were all possible outcomes 
(Nomoto & Kondo 1991, Isern+ 1991, Canal+ 1992)



  

O DEFLAGRATION
MULTI-DIMENSIONAL SIMULATIONS
in collaboration with: F. Röpke, R. Pakmor, I. Seitenzahl, S. Ohlmann & P. Edelmann

LEAFS code (Reinecke+ 1999, Röpke & Hillebrandt 
2005, Röpke 2005, 2006)

Isothermal ONe core/WD in HSE with central 
densities 109.9, 109.95, 1010.3 g / cc

Centrally-confined ignition: 300 'bubbles' within 50 
km sphere, < 5 x 10-4 M☉ inside initial flame

Laminar flame speeds from Timmes+ (1992); turbulent 
from Schmidt+ (2006)



  

NUCLEAR REACTIONS
DELEPTONISATION OF NSE ASH

NKK: Nabi & Klapdor-
Kleingrothaus

LMP: Langanke & 
Martinez-Pinedo (2001)

ODA: Oda+ (1994)

FFN: Fuller, Fowler & 
Newman (1985)

ANA: Analytical rates; 
Gamow-Teller strength 
B = 4.6 (Arcones+ 
2010)

SJ, FKR, RP, IRS, STO, PVFE 
arXiv:1602.05771
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Scale: 2500 km
Time: 1.3 s
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Scale: 400,000 km
Time: 60 s
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FLAME SPEEDS

Outcome dictated by speed of 
flame and growth of Rayleigh-
Taylor instability

Accurate predictions require 
these kinds of multi-D 
simulations



ρign = 109.9 g cm-3

THERMONUCLEAR EXPLOSION?

SJ, FKR, RP, IRS, STO, PVFE 
arXiv:1602.05771



ρign = 1010.3 g cm-3

CORE COLLAPSE

SJ, FKR, RP, IRS, STO, PVFE 
arXiv:1602.05771



DIAGNOSTICS

Bound ONeFe remnants

Remarkably similar result to Isern+ (1991)

Core collapse

SJ, FKR, RP, IRS, STO, PVFE 
arXiv:1602.05771

What would these things actually look like? Faint 
SN1a? Have we seen them? → Radiative transfer 

calculations required



YIELDS
PRELIMINARY



  

SPHERICAL FLAME?
Quantitative measure of flame asymmetry



  

SPHERICAL FLAME?



NUCLEAR REACTIONS
DELEPTONISATION OF NSE ASH

NKK: Nabi & Klapdor-
Kleingrothaus

LMP: Langanke & 
Martinez-Pinedo (2001)

ODA: Oda+ (1994)

FFN: Fuller, Fowler & 
Newman (1985)

ANA: Analytical rates; 
Gamow-Teller strength 
B = 4.6 (Arcones+ 
2010)

SJ, FKR, RP, IRS, STO, PVFE 
arXiv:1602.05771

How accurate are these reaction rates, particularly 
for neutron-rich nuclei?



IGNITION DENSITY
SENSITIVITY TO MIXING PROCESSES

M80: Miyaji+ (1980)

N87: Nomoto (1987)

M87: Miyaji & Nomoto (1987)

I91: Isern+ (1991)

C92: Canal+ (1992)

H93: Hashimoto+ (1993)

G96: Gutierrez+ (1996)

J13: Jones+ (2013)

T13: Takahashi+ (2013)

S15: Schwab+ (2015)



  

SUMMARY
ECSNe and AIC of ONe Wds 
postulated to explain many 
astrophysical observations, 
including:
● Abundance anti-correlations
● Site for r-process
● “bimodal” NS mass distribution
● Bimodal BeX orbital 

eccentricity
● Low L transients
In recent 2-3 years we have 
improved:
● Nuclear physics input
● Progenitor models
● Deflagration simulations
Next: pre-ignition mixing

Temporally and spatially averaged 
mixing properties of 3D 
hydrodynamic O-shell burning 
simulations can be well 
approximated in 1D codes when:
● the local MLT mixing length is 

limited to the distance to the 
convective boundary 

● Exponential-diffusive CBM is 
employed, with an e-folding 
length of ~0.03HP

This is a promising start to 
improving the treatment of 
CBM in stellar models and is 
important for determining pre-
SN structure
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