# SIMULATING THE LIVES AND DEATHS OF OF 8 – 10 SOLAR-MASS STARS

**SAMUEL JONES** HEIDELBERG INSTITUTE FOR THEORETICAL STUDIES

TUE 21 JUN 2016 ICRANet, Pescara



# LOW AND INTERMEDIATE MASS STARS

Image Credit: Solar Dynamics Observatory, NASA

# NUCLEAR POWER

#### H & He BURNING

Image Credit: David Taylor



If the star is massive enough ( > 0.8 solar masses):





Image credit: Persson, Magnus Vilhelm (2013)

#### **PLANETARY NEBULAE** & WHITE DWARFS

CO white dwarf (WD)

Image credit: NASA/Andrew Fruchter (STScI)

#### **EXPLODING WHITE DWARFS** THERMONUCLEAR SUPERNOVAE

Image credit: NASA/CXC/SAO

# MASSIVE STARS



#### Artist's impression of Rigel

Image Credit: Adam Burn

# **NUCLEAR POWER**

| Fuel   | Main<br>Product   | Secondary<br>Product                                      | T<br>(10 <sup>9</sup> K)                                                                                                                               | Time<br>(yr)                                                                                                                                                                                                                                                                                                                                                                                                                                           | Main<br>Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| н      | He                | <sup>14</sup> N                                           | 0.02                                                                                                                                                   | <b>10</b> <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4 H \xrightarrow{CNO} 4He$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| He 🖌   | 0, C              | <sup>18</sup> O, <sup>22</sup> Ne<br>s-process            | 0.2                                                                                                                                                    | <b>10</b> <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 ⁴He → ¹²C<br>¹²C(α,γ)¹6O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C      | Ne,<br>Mg         | Na                                                        | 0.8                                                                                                                                                    | <b>10</b> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>12</sup> <b>C</b> + <sup>12</sup> <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ne     | O, Mg             | AI, P                                                     | 1.5                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>20</sup> Ne(γ,α) <sup>16</sup> O<br><sup>20</sup> Ne(α,γ) <sup>24</sup> Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OX     | Si, S             | CI, Ar,<br>K, Ca                                          | 2.0                                                                                                                                                    | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>16</sup> <b>O</b> + <sup>16</sup> <b>O</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Si,S 🖌 | Fe                | Ti, V, Cr,<br>Mn, Co, Ni                                  | 3.5                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ²8 <b>Si(γ,α)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Fuel<br>H<br>He A | FuelMain<br>ProductHHeHeO, CCNe,<br>MgNeO, MgOSi, SSi,SFe | FuelMain<br>ProductSecondary<br>ProductHHe14NHe0, C18O, 22Ne<br>s-processCNe,<br>MgNaNeO, MgAI, POSi, SCl, Ar,<br>K, CaSi, SFeTi, V, Cr,<br>Mn, Co, Ni | Fuel         Main<br>Product         Secondary<br>Product         T<br>(10 <sup>9</sup> K)           H         He         14N         0.02           He         O, C         18O, 22Ne<br>s-process         0.2           C         Ne,<br>Mg         Na         0.8           Ne         O, Mg         AI, P         1.5           Si, S         Cl, Ar,<br>K, Ca         2.0           Si, S         Fe         Ti, V, Cr,<br>Mn, Co, Ni         3.5 | Fuel         Main<br>Product         Secondary<br>Product         T<br>(10 <sup>9</sup> K)         Time<br>(yr)           H         He         14N         0.02         107           He         0, C         18O, 22Ne<br>s-process         0.2         106           C         Ne,<br>Mg         Na         0.8         103           Ne         O, Mg         AI, P         1.5         3           Si, S         Cl, Ar,<br>K, Ca         2.0         0.8           Si, S         Fe         Ti, V, Cr,<br>Mn, Co, Ni         3.5         0.02 |

Image credit: Alexander Heger

Star develops an 'iron' core

# **COLLAPSE OF THE IRON CORE**

Silicon burns into 'iron' in a shell until the iron core exceeds the critical mass that can be supported by its degenerate electron gas: the **effective Chandrasekhar limit** 

The core collapses until the central region reaches **nuclear saturation density** (~10<sup>14</sup> g/cc); The in-falling material **bounces**, launching a **shock wave; [shock stalling and revival]; supernova explosion** 



Image credit: R. J. Hall

# CAS A

Image credit: NASA/CXC/SAO

#### Neutron star (NS)

# **SUPER-AGB STARS**

"8-10 SOLAR-MASS" STARS

Image credit: Alexander Heger

| Fuel | Main<br>Product | Secondary<br>Product                           | T<br>(10 <sup>9</sup> K) | Time<br>(yr)           | Main<br>Reaction                                                                |
|------|-----------------|------------------------------------------------|--------------------------|------------------------|---------------------------------------------------------------------------------|
| н    | He              | <sup>14</sup> N                                | 0.02                     | <b>10</b> <sup>7</sup> | $4 H \xrightarrow{CNO} {}^{4}He$                                                |
| He 🖌 | 0, C            | <sup>18</sup> O, <sup>22</sup> Ne<br>s-process | 0.2                      | <b>10</b> <sup>6</sup> | 3 ⁴He → ¹²C<br>¹²C(α,γ)¹6O                                                      |
| C    | Ne,<br>Mg       | Na                                             | 0.8                      | <b>10</b> <sup>3</sup> | <sup>12</sup> <b>C</b> + <sup>12</sup> <b>C</b>                                 |
| Ne   | O, Mg           | AI, P                                          | 1.5                      | 3                      | <sup>20</sup> Ne(γ,α) <sup>16</sup> O<br><sup>20</sup> Ne(α,γ) <sup>24</sup> Mg |

**Nuclear burning is curtailed** due to combined effects of neutrino losses and degeneracy, leaving an **ONe core** 



### **SUPER-AGB STARS**

# WHY STUDY THESE STARS?

Assuming a *Salpeter* IMF, 8–10 solar-mass stars constitute **26 % of all massive stars**. Probably more (e.g. Jennings+ 2012).

SNe from these stars (electron capture SNe and/or accretion-induced collapse of ONe WDs) postulated to explain many observations, including:
Production of Ag and Pd (e.g. Hansen+ 2012)

Site for r-process (e.g. Cescutti+ 2014, but also Wanajo+ 2011)

"bimodal" NS mass distribution (e.g. Schwab+ 2010)

Bimodal BeX orbital eccentricity (e.g. Knigge+ 2011)

Low L transients (e.g. Thompson+ 2009)

# WHAT HAPPENS TO 8-10 SOLAR-MASS STARS?



Image credit: NASA/Andrew Fruchter (STScI)



Lugaro+ (2012)



**3.** An **ONe WD** is formed, but later **accretes** from a binary companion and **collapses to a neutron star**  Two (three) general classical scenarios:

 The H envelope is ejected, producing a planetary nebula and an ONe white dwarf

2. The core grows due to accumulation of ash from the burning shells, eventually exceeding the effective Chandrasekhar limit and collapsing to a neutron star At about 3e9 g/cc, <sup>24</sup>Mg begins to capture electrons, inducing a contraction

But it is <sup>20</sup>Ne + 2e<sup>-</sup>, activated at about 10<sup>10</sup> g/cc that releases enough energy to ignite an **oxygen deflagration** wave in the centre

Miyaji+ (1980); Nomoto (1984,1987)



The energy release from burning **competes with electron capture** on the ash; in the classical picture the electron captures win and the star's **core collapses (an electroncapture supernova; ECSN)** 

# WHAT HAPPENS TO 8-10 SOLAR-MASS STARS?

Determined by balance between **convective boundary (core-envelope) mixing** (uncertain) and **envelope shedding due to the stellar wind** (uncertain)

Image credit: NASA/Andrew Fruchter (STScI)

#### MIXING IN STARS IDEALISED 3D SIMULATIONS TO INFORM 1D MODELS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)

#### MIXING IN STARS IDEALISED 3D SIMULATIONS WITH PPMstar

In collaboration with: Robert Andrassy, Stou Sandalski, Austin Davis, Paul Woodward, Falk Herwig

768<sup>3</sup> and 1536<sup>3</sup> simulations in  $4\pi$  geometry O shell burning 2 fluids ( $\mu_{conv} = 1.848$ ,  $\mu_{stab} = 1.802$ ) Constant volume heating Ideal gas EoS

S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)

# MIXING IN STARS S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)



## **MIXING IN STARS**



# **MIXING IN STARS**



S. Jones, RA, SS, AD, PW, FH (2016, arXiv:1605.03766)

#### **MIXING IN STARS** 1D MIXING MODEL

$$\frac{1}{3}$$
V<sub>MLT</sub> × min( $\ell$ , r<sub>0</sub> – r)

$$D(r) = D(r_0) \times \exp\left\{-\frac{2(r-r_0)}{f_{\text{CBM}}H_P(r_0)}\right\}$$

 $f_{\rm CBM} = 0.03$ 



S. Jones, RA, SS, AD, PW, FH (2016, ArXiv e-prints, arXiv:1605.03766)

#### **MIXING IN STARS** IMPLICATION FOR CCSN PROGENITORS



Let's pick up the story again at the ignition of an O deflagration wave (sub-sonic flame)

At about 3e9 g/cc, <sup>24</sup>Mg begins to capture electrons, inducing a contraction

But it is <sup>20</sup>Ne + 2e-, activated at about 1e10 g/cc that releases enough energy to ignite an **oxygen deflagration** wave in the centre

Miyaji+ (1980); Nomoto (1984,1987)



The energy release from burning **competes with electron capture** on the ash; in the classical picture the electron captures win and the star's **core collapses (an electroncapture supernova; ECSN)** 

# WHAT ARE ELECTRON-CAPTURE SUPERNOVAE?

Image credit: NASA/CXC/SAO

Image credit: NASA/CXC/SAO



Martinez-Pinedo+ (2014)

#### <sup>20</sup>Ne ELECTRON CAPTURE RAPID HEATING IGNITES THERMONUCLEAR RUNAWAY





#### In 1D simulations of the O deflagration, **neutron stars**, **WDs and thermonuclear SNe were all possible outcomes** (Nomoto & Kondo 1991, Isern+ 1991, Canal+ 1992)

### **O DEFLAGRATION**

#### **ODEFLAGRATION** MULTI-DIMENSIONAL SIMULATIONS

in collaboration with: F. Röpke, R. Pakmor, I. Seitenzahl, S. Ohlmann & P. Edelmann

LEAFS code (Reinecke+ 1999, Röpke & Hillebrandt 2005, Röpke 2005, 2006)

Isothermal ONe core/WD in HSE with **central densities 10**<sup>9.9</sup>, **10**<sup>9.95</sup>, **10**<sup>10.3</sup> g / cc

**Centrally-confined ignition**: 300 'bubbles' within 50 km sphere, < 5 x  $10^{-4}$  M<sub> $\odot$ </sub> inside initial flame

Laminar **flame speeds** from Timmes+ (1992); turbulent from Schmidt+ (2006)

#### NUCLEAR REACTIONS DELEPTONISATION OF NSE ASH

SJ, FKR, RP, IRS, STO, PVFE arXiv:1602.05771



Scale: 1500 km Time: 0.7 s



# **О DEFLAGRATION 3D 4л: 512<sup>3</sup>** THERMONUCLEAR EXPLOSION?





Time: 1.3 s **О DEFLAGRATION 3D 4л: 512<sup>3</sup>** THERMONUCLEAR EXPLOSION?



Scale: 400,000 km Time: 60 s

# **О DEFLAGRATION 3D 4л: 512<sup>3</sup>** THERMONUCLEAR EXPLOSION?



Fe

Outcome dictated by speed of flame and growth of Rayleigh-Taylor instability

Accurate predictions require these kinds of multi-D



10<sup>0</sup>

 $10^{-1}$ 

10<sup>-2</sup>

G15

v / c<sub>s</sub>

### **FLAME SPEEDS**



SJ, FKR, RP, IRS, STO, PVFE arXiv:1602.05771



#### **ρ**<sub>ign</sub> = **10**<sup>10.3</sup> g cm<sup>-3</sup> CORE COLLAPSE

SJ, FKR, RP, IRS, STO, PVFE arXiv:1602.05771



## DIAGNOSTICS



Remarkably similar result to Isern+ (1991)

#### **YIELDS** PRELIMINARY



# **SPHERICAL FLAME?**

Quantitative measure of flame asymmetry





 $1.1 \times 10^7$  cm



ζ=1.39



0.48

0.46

0.44

0.42

0.40

 $\mathsf{Y}_{\mathsf{e}}$ 

 $3.6 \times 10^7 \, \text{cm}$ 

#### NUCLEAR REACTIONS DELEPTONISATION OF NSE ASH

SJ, FKR, RP, IRS, STO, PVFE arXiv:1602.05771



#### **IGNITION DENSITY** SENSITIVITY TO MIXING PROCESSES



# SUMMARY

ECSNe and AIC of ONe Wds postulated to explain many astrophysical observations, including:

- Abundance anti-correlations
- Site for r-process
- "bimodal" NS mass distribution
- Bimodal BeX orbital eccentricity
- Low L transients

In recent 2-3 years we have improved:

- Nuclear physics input
- Progenitor models
- Deflagration simulations Next: pre-ignition mixing

Temporally and spatially averaged mixing properties of 3D hydrodynamic O-shell burning simulations can be well approximated in 1D codes when:

- the local MLT mixing length is limited to the distance to the convective boundary
- Exponential-diffusive CBM is employed, with an e-folding length of ~0.03H<sub>p</sub>

This is a promising start to improving the treatment of CBM in stellar models and is important for determining pre-SN structure