Supernovae, Hypernovae and Binary Driven Hypernovae An Adriatic Workshop Pescara – June 20–30, 2016

Induced compression of WDs by angular momentum loss and I-Love-Q relations in WDs

Kuantay Boshkayev

in collaboration with

Jorge A. Rueda, Remo Ruffini, Ivan Siutsou,

Hernando Quevedo, Kalymova Zhanerke, Zhami Bakytzhan

How will isolated white dwarfs evolve by losing angular momentum?

Super-Chandrasekhar WDs

will they slow down ? -> no
will they explode as a type Ia supernova ? - > ?, yes
will they collapse into a neutron star ? -> ?, yes

Sub-Chandrasekhar WDs

will they slow down ? -> yes will they live forever ? -> yes

Equilibrium WD configurations

Boshkayev, Rueda, Ruffini, Siutsou, ApJ 2013, 762, 117

Carbon WD for RFMT EoS.

Oxygen WD for RFMT EoS.

Equilibrium WD configurations

Boshkayev, Rueda, Ruffini, Siutsou, ApJ 2013, 762, 117

Carbon WD for RFMT EoS.

Oxygen WD for RFMT EoS.

Rotating WD properties

Composition	$ ho_{M^{J \neq 0}_{max}}$	k	$M_{max}^{J=0}/M_{\odot}$	$R_{M_{max}^{J=0}}$	σ	P_{min}
⁴ He	5.46×10 ⁹	1.0646	1.40906	1163	0.26952	0.284
¹² C	6.95×10 ⁹	1.0632	1.38603	1051	0.54692	0.501
¹⁶ O	7.68×10 ⁹	1.0626	1.38024	1076	0.72343	0.687
⁵⁶ Fe	1.18×10 ⁹	1.0864	1.10618	2181	0.71685	2.195

Maximum Mass and Minimum Period

$$M_{max}^{J\neq0} = k M_{max}^{J=0} \sim 1.500, 1.474, 1.467, 1.202 M_{\odot}$$
$$P_{min} = \sigma \left(\frac{M_{\odot}}{M_{max}^{J=0}}\right)^{\frac{1}{2}} \left(\frac{R_{M_{max}^{J=0}}}{10^{3} \text{km}}\right)^{\frac{3}{2}} \sec \sim 0.3, 0.5, 0.7, 2.2 \sec \varepsilon$$

Boshkayev, Rueda, Ruffini, Siutsou, ApJ 2013, 762, 117

Astrophysical Implications of WDs

Type la Supernovae From Very Long Delayed **Explosion** of Core-WD Merger

It is assumed that J is proportional to Ω_{i} *i.e. the moment of inertia I is constant.*

Type Ia Supernovae From Very Long Delayed Explosion of Core-WD Merger

M. Ilkov and N. Soker. MNRAS 419, 1695, (2012)

$$\begin{split} \dot{E}_{rot} &= \Omega \frac{dJ}{d\Omega} \frac{d\Omega}{dt} = -4\pi^2 I \frac{\dot{P}}{P^3} \qquad \dot{E}_{EM} = -\frac{2}{3} \frac{B^2 R^6}{c^3} \Omega^4 = -\frac{32\pi^4}{3} \frac{B^2}{c^3} \frac{R^6}{P^4} \\ \tau_{\rm B} &\simeq \frac{Ic^3}{B^2 R^6 \Omega_c^2} \left[1 - \left(\frac{\tilde{\Omega}_0}{\tilde{\Omega}_c}\right)^{-2} \right] (\sin \delta)^{-2} \approx 10^8 \left(\frac{B}{10^8 \text{ G}}\right)^{-2} \left(\frac{\tilde{\Omega}_c}{0.7 \Omega_{\rm Kep}}\right)^{-2} \\ &\times \left(\frac{R}{4000 \text{ km}}\right)^{-1} \left(\frac{\sin \delta}{0.1}\right)^{-2} \left(\frac{\beta_I}{0.3}\right) \left[1 - \left(\frac{\tilde{\Omega}_0}{\tilde{\Omega}_c}\right)^{-2} \right] \text{ yr}, \end{split}$$

It is assumed that J is proportional to Ω , *i.e.* the moment of inertia I is constant.

The result... $10^{6} \text{ G} \lesssim \text{B} \sin \delta \lesssim 10^{8} \text{ G}$ $10^{7} \lesssim t \lesssim 10^{10} \text{ yr}$

Moment of Inertia of NR and RWDs

•Hartle, J. B. 1973, Astrophys. Space Science, 24, 385

Spin-up and spin-down stages

Shapiro, S. L., Teukolsky, S. A., & Nakamura, T. 1990, Ap. J., 357, L17
Geroyannis, V. S. & Papasotiriou, P. J. 2000, Astrophys. J., 534, 359

•Boshkayev, Rueda, Ruffini, Siutsou, ApJ 2013, 762, 117

Delayed gravitational collapse of Super Chandrasekhar WDs

Proceedings of the Italian Korean Symposium 2013

Assuming constant B over the course of time

Angular velocity versus time

Magnetic field versus time

Mean radius versus time

Moment of inertia versus time

Concluding remarks

- Stability of rotating WDs is a delicate matter: all mass-shedding, inverse beta decay, and secular instability play role
- Both spin-down and spin-up stages by loosing angular momentum are possible in WDs
- Super Chandrasekhar WDs can only spin up by angular momentum loss
- The delayed time for gravitational collapse of a WD via magnetic braking is comprised in a variety of ranges upon the magnetic field value
- We showed that WDs composed of light elements (Helium, Carbon) are unstable against axisymmetric secular instability, whereas WDs with heavy elements (Oxygen,.., Iron) are stable.
- Evolution of the physical parameters of WDs over time due to the angular momentum loss.
- The magnetic flux conservation shortens the lifespan of WDs.
- It will be interesting to consider the effects of temperature.
- Work in progress

1	<u>2013PhRvD88b3009Y</u> Yagi, Kent; Yunes, Nicolás	100.000 I-Love-Q relati	07/2013 ons in neutron st	<u>A</u> tars and	<u>E</u> their app	X plications to	<u>R</u> <u>C</u> astrophysics, gravit:	ational	
2	■ <u>2013Sci341365Y</u> Yagi, Kent; Yunes, Nicolás	99.270 I-Love-Q: Une	07/2013 xpected Univers	<u>A</u> al Relati	<u>E</u> <u>F</u> ons for 1	X Neutron Star	<u>R</u> <u>C</u> s and Quark Stars		
3	<u>2014PhRvL.112l1101P</u> Pappas, George; Apostolatos, Theocharis A.	96.620 Effectively Uni	03/2014 iversal Behavior	<u>A</u> of Rotat	<u>E</u> ing Neu	<u>X</u> tron Stars in	<u>R</u> <u>C</u> General Relativity I	Makes	
4	■ <u>2014PhRvD90b4025P</u> Pani, Paolo; Berti, Emanuele	95.730 07/2014 <u>A E X</u> <u>R C</u> Slowly rotating neutron stars in scalar-tensor theories							
5	<u>2014MNRAS.438L71H</u> Haskell, B.; Ciolfi, R.; Pannarale, F.; Rezzolla, L.	95.440 02/2014 <u>A E F X R C S</u> On the universality of I-Love-Q relations in magnetized neutron stars							
6	<u>2014ApJ781L6D</u> Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.	95.440 01/2014 <u>A E F X R C</u> Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars							
7	<u>2014ApJ78166S</u> Sham, YH.; Lin, LM.; Leung, P. T.	93.640 Testing Univer	02/2014 sal Relations of I	<u>A</u> Neutron	<u>E</u> <u>F</u> Stars wi	<u>X</u> ith a Nonline	<u>R C</u> S ar Matter-Gravity C	ouplin	
8	■ <u>2015PhRvD9214030P</u> Pani, Paolo	92.930 I-Love-Q relati	12/2015 ons for gravasta	<u>A</u> rs and th	<u>E</u> e appro	X ach to the bla	<u>R</u> C ack-hole limit		
9	<u>2014PhRvD90f3010Y</u> Yagi, Kent; Stein, Leo C.; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.	91.940 09/2014 <u>A E X R C</u> Why I-Love-Q: Explaining why universality emerges in compact objects							
10) ■ <u>2015PhRvD9113008Y</u> Yagi, Kent; Yunes, Nicolás	87.410 I-Love-Q aniso	06/2015 otropically: Unive	<u>A</u> ersal rela	<u>E</u> ations fo	X r compact st	<u>R</u> C ars with scalar press	sure an	

PHYSICAL REVIEW D 88, 023009 (2013)

I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics

Kent Yagi and Nicolás Yunes

Department of Physics, Montana State University, Bozeman, Montana 59717, USA (Received 6 March 2013; published 19 July 2013)

PHYSICAL REVIEW D 88, 023009 (2013)

I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics

Kent Yagi and Nicolás Yunes

Department of Physics, Montana State University, Bozeman, Montana 59717, USA (Received 6 March 2013; published 19 July 2013)

PHYSICAL REVIEW D 88, 023009 (2013)

I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics

Kent Yagi and Nicolás Yunes

Department of Physics, Montana State University, Bozeman, Montana 59717, USA (Received 6 March 2013; published 19 July 2013)

$$\lambda = \frac{Q}{\Omega^2}, \qquad GI_{02} = -\frac{2}{3}\sqrt{\frac{5}{4\pi}}k_2\Omega^2 a^5,$$

book by Poisson and Will [24] on page 118

$$-I_{02}\sqrt{4\pi/5} = Q \qquad (2/3)k_2a^5/G = \lambda$$

I-Love-Q-e relations for WDs

$$J_2 = \frac{2}{3} \frac{k_2}{1+2k_2} e^2, \qquad J_2 = Q/(Ma^2)$$

Poisson and Will [24] on page 119

[24] E. Poisson, C.M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic.
 (2014).

Thank you for your attention!