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4. Brief description of scientific
works

4.1. Mach or Higgs? The mechanisms to generate

mass

The purpose of this work is to show that the gravitational interaction is able to
generate mass for all bodies. The condition for this is the existence of an energy
distribution represented by the vacuum or the cosmological constant term Λ gµν .
We review briefly the alternative Higgs mechanism in order to compare both
processes.

4.2. On a Geometrical Description of Quantum

Mechanics

We show that Quantum Mechanics can be interpreted as a modification of the
Euclidean nature of 3-d space into a particular affine space, which we call Q-
wis. This is proved using the Bohm-de Broglie causal formulation of Quantum
Mechanics. In the Q-wis geometry, the length of extended objects changes from
point to point. In this formulation, deformation of physical distances are in the
core of quantum effects allowing a geometrical formulation of the uncertainty
principle.

4.3. Bouncing Cosmologies

See Chapter E

4.4. Comments on Bouncing

• We introduce analytic solutions for a class of two components bouncing
models, where the bounce is triggered by a negative energy density perfect
fluid. The equation of state of the two components are constant in time,
but otherwise unrelated. By numerically integrating regular equations for
scalar cosmological perturbations, we find that the (would-be) growing
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mode of the Newtonian potential before the bounce never matches with the
growing mode in the expanding stage. For the particular case of a negative
energy density component with a stiff equation of state we give a detailed
analytic study, which is in complete agreement with the numerical results.
We also perform analytic and numerical calculations for long wavelength
tensor perturbations, obtaining that, in most cases of interest, the tensor
spectral index is independent of the negative energy fluid and given by the
spectral index of the growing mode in the contracting stage. We compare
our results with previous investigations in the literature.

• We propose a new cosmological paradigm in which our observed expanding
phase is originated from an initially large contracting Universe that subse-
quently experienced a bounce. This category of models, being geodesically
complete, is nonsingular and horizon-free and can be made to prevent any
relevant scale to ever have been smaller than the Planck length. In this
scenario, one can find new ways to solve the standard cosmological puzzles.
One can also obtain scale invariant spectra for both scalar and tensor per-
turbations: this will be the case, for instance, if the contracting Universe
is dust-dominated at the time at which large wavelength perturbations get
larger than the curvature scale. We present a particular example based
on a dust fluid classically contracting model, where a bounce occurs due
to quantum effects, in which these features are explicit;

• We study Einstein gravity minimally coupled to a scalar field in a static,
spherically symmetric space-time in four dimensions. Black hole solutions
are shown to exist for a phantom scalar field whose kinetic energy is neg-
ative. These scalar black holes have an infinite horizon area and zero
temperature TH and are termed cold black holes (CBHs). The relevant
explicit solutions are well-known in the massless case (the so-called anti-
Fisher solution), and we have found a particular example of a CBH with a
nonzero potential V. All CBHs with V are shown to behave near the hori-
zon quite similarly to those with a massless field. The above solutions can
be converted by a conformal transformation to Jordan frames of a general
class of scalar-tensor theories of gravity, but CBH horizons in one frame
are in many cases converted to singularities in the other, which gives rise
to a new type of conformal continuation.

• Cosmological models with two interacting fluids, each satisfying the strong
energy condition, are studied in the framework of classical General Rel-
ativity. If the interactions are phenomenologically described by a power
law in the scale factor, the two initial interacting fluids can be equivalently
substituted by two non interacting effective fluids, where one of them may
violate the strong energy condition and/or have negative energy density.
Analytical solutions of the Friedmann equations of this general setting
are obtained and studied. One may have, depending on the scale where
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the interaction becomes important, non singular universes with early ac-
celerated phase, or singular models with transition from decelerated to
accelerated expansion at large scales. Among the first, there are bouncing
models where contraction is stopped by the interaction. In the second
case, one obtains dark energy expansion rates without dark energy, like
λCDM or phantomic accelerated expansions without cosmological con-
stant or phantoms, respectively.

• It is generally believed that one cannot obtain a large universe from quan-
tum cosmological models without an inflationary phase in the classical
expanding era because the typical size of the universe after leaving the
quantum regime should be around the Planck length, and the standard
decelerated classical expansion after that is not sufficient to enlarge the
universe in the time available. For instance, in many quantum minisuper-
space bouncing models studied in the literature, solutions where the uni-
verse leaves the quantum regime in the expanding phase with appropriate
size have negligible probability amplitude with respect to solutions leaving
this regime around the Planck length. In this paper, I present a general
class of moving Gaussian solutions of the Wheeler-DeWitt equation where
the velocity of the wave in minisuperspace along the scale factor axis,
which is the new large parameter introduced in order to circumvent the
above-mentioned problem, induces a large acceleration around the quan-
tum bounce, forcing the universe to leave the quantum regime sufficiently
big to increase afterwards to the present size, without needing any classi-
cal inflationary phase in between, and with reasonable relative probability
amplitudes with respect to models leaving the quantum regime around the
Planck scale. Furthermore, linear perturbations around this background
model are free of any trans-Planckian problem.

• We show how to obtain the simplest equations for the Mukhanov-Sasaki
variables describing quantum linear scalar perturbations in the case of
scalar fields without potential term. This was done through the imple-
mentation of canonical transformations at the classical level, and unitary
transformations at the quantum level, without ever using any classical
background equation, and it completes the simplification initiated in in-
vestigations by Langlois [D. Langlois, Classical Quantum Gravity 11, 389
(1994).], and Pinho and Pinto-Neto [E. J. C. Pinho and N. Pinto-Neto,
Phys. Rev. D 76, 023506 (2007).] for this case. These equations were then
used to calculate the spectrum index ns of quantum scalar perturbations
of a nonsingular inflationary quantum background model, which starts at
infinity past from flat space-time with Planckian size spacelike hypersur-
faces, and inflates due to a quantum cosmological effect, until it makes
an analytical graceful exit from this inflationary epoch to a decelerated
classical stiff matter expansion phase. The result is ns 3, incompatible
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with observations.

• We show that minisuperspace quantization of homogeneous and isotropic
geometries with phantom scalar fields, when examined in the light of the
Bohm-de Broglie interpretation of quantum mechanics, does not eliminate,
in general, the classical big rip singularity present in the classical model.
For some values of the Hamilton-Jacobi separation constant present in a
class of quantum state solutions of the Wheeler-De Witt equation, the big
rip can be either completely eliminated or may still constitute a future
attractor for all expanding solutions. This is contrary to the conclusion
presented in [M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev.
D 74, 044022 (2006).], using a different interpretation of the wave func-
tion, where the big rip singularity is completely eliminated (smoothed out)
through quantization, independently of such a separation constant and for
all members of the above mentioned class of solutions. This is an example
of the very peculiar situation where different interpretations of the same
quantum state of a system are predicting different physical facts, instead
of just giving different descriptions of the same observable facts: in fact,
there is nothing more observable than the fate of the whole Universe;

• We investigate if theories yielding bouncing cosmological models also gen-
erate wormhole solutions. We show that two of them present sensible
traversable static wormhole solutions, while for the third possibility such
solutions are absent.

4.5. Properties of generalized gravitional theories

Although gravity has been shown to be with high accuracy in accordance with
General Relativity in a number of situations in which the curvature is small,
there is no observational evidence of the behaviour of the gravitational field for
very large values of the curvature. In this regard, objects such as black holes and
neutron stars are the ideal places to look for deviations from General Relativity
in the strong regime [5]. In fact, the Kerr (hence Schwarzschild’s) solution is
not unique in f(R) theories [6]. Hence, any deviation from these metrics will be
unequivocally signaling the need of changes in our description of strong gravity.
The task of understanding what kind of deviations can be expected, and their
relation to observable quantities is of relevance in view of several developments
that offer the prospect of observing properties of black holes in the vicinity of the
horizon. Among these, we can cite possibility of obtaining ”black hole images”
[7], and the precision measurements of the motion of gas and high-eccentricity
stars in the immediate vicinity of the SMBH at the center of the Milky Way [8].
As a first step in discussing deviations from General Relativity in strong-field
gravity, I am examining some features of static and spherically symmetric (SSS)
black hole solutions in theories with a Lagrangian that is a function of the Ricci
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scalar. Different aspects of this type of solutions in f(R) theories have been
previously in discussed in [9], mostly resorting to exact solutions and/or phase
space analysis. I am taking a complementary path which consists in assuming
for an arbitrary f(R) that a SSS black hole solution exists, with a horizon at
r = r0, defined by the condition g00(r0) = 0.
Another line of research that I am pursuing (with the student Marcio Oliveira

Pinheiro) is the study of the propagation of perturbations in theories described
by the action

S =
M2

P

2

∫
d4x
√−gF (R,RµνR

µν , RµνλρR
µνλρ, ...). (4.1)

I showed in [10] that by imposing that the propagation of the perturbations in
a nonlinear spin 2 theory be free of shocks [11], the freedom in the dependence
of the Lagrangian with the field invariants can be greatly reduced. We are
currently applying the same procedure to the action given by Eqn.(4.1).
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4.6. Effective Geometry in non-linear

Electrodynamics

The idea that gravity may be an emergent phenomenon described by an effec-
tive low-energy theory which a is consequence of averaging over (yet unknown)
microphysical degrees of freedom dates back at least to the proposal of Sakharov
in 1968. Since then, it has been shown that is not difficult to get a low-energy
effective metric (although it is considerably harder to get dynamical equations
controlling it). In fact, the effective metric arises in systems of very different
types ). The basic idea behind this generality has been exposed in [1], where it
was shown that given a classical single-field theory described by a Lagrangian
that is an arbitrary function of the field and its derivatives, the fluctuations of
the linearized theory around a non-trivial background propagate in a curved
spacetime. The geometry of this spacetime is encoded by the effective metric,
which is unique in the case of a single field, and depends on the background
field configuration. This feature of nonlinear theories led to the construction of
analog models of gravity, which imitate the kinematical properties of gravita-
tional fields (see [2] for a complete list). In a previous paper [325] E. Goulart
and I showed that only two types of effective metrics are possible in certain
nonlinear electromagnetic theories. This was achieved by using the dependence
of the effective metric on the energy-momentum tensor of the background along
with the Segrè classification of the latter. Each of these forms is completely
determined by single scalar function, which characterizes the light cone of the
nonlinear theory. This light cone was compared with that of Minkowski in two
examples. We are currently working in the same problem for nonlinear scalar
field theories, which are taken as models for dark energy [4].

M Novello and Erico Goulart published a book (in portuguese) entitled Eletro-
dinamica nao-linear (causalidade e efeitos cosmologicos) in August 2010
that is a consequence of the research we made within this line of research.

In recent years, there has been a growing interest in models that mimic in the
laboratory some features of gravitation. The actual realization of these models
relies on systems that are very different in nature: ordinary non-viscous fluids,
superfluids, flowing and non-flowing dielectrics, non-linear electromagnetism in
vacuum, and Bose-Einstein condensates. The basic feature shared by these
systems is that the behavior of the fluctuations around a background solution
is governed by an effective metric. More precisely, the particles associated to
the perturbations do not follow geodesics of the background spacetime but of
a Lorentzian geometry described by the effective metric, which depends on the
background solution as pointed out some time ago by Unruh and earlier by Ple-
banski. It is important to notice that only some kinematical aspects of general
relativity can be imitated by this method, but not its dynamical features. Al-
though most of these works concerns sound propagation, the most fashionable
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results deal with non-linear Electrodynamics. This is related to the possibility
of dealing with phenomena that are treatable in actual laboratory experiments.
This is one of the main reasons that induce us to analyze carefully a certain num-
ber of non-equivalent non-linear electromagnetic configurations. Among these
results we can quote the possibility of imitating a non-gravitational Black Hole
in laboratory dealing with non-linear electrodynamics effects (see Appendix).

4.7. Non-linear field theory in flat and curved

space-time

Recent works have shown the important role that Nonlinear Electrodynamics
(NLED) can have in two crucial questions of Cosmology, concerning particular
moments of its evolution for very large and for low-curvature regimes, that is
for very condensed phase and at the period of acceleration. We present here
a a toy model of a complete cosmological scenario in which the main factor
responsible for the geometry is a nonlinear magnetic field which produces a
FRW homogeneous and isotropic geometry. In this scenario we distinguish four
distinct phases: a bouncing period, a radiation era, an acceleration era and a
re-bouncing. It has already been shown that in NLED a strong magnetic field
can overcome the inevitability of a singular region typical of linear Maxwell
theory; on the other extreme situation, that is for very weak magnetic field it
can accelerate the expansion. The present model goes one step further: after
the acceleration phase the universe re-bounces and enter in a collapse era. This
behavior is a manifestation of the invariance under the dual map of the scale
factor a(t) → 1/a(t), a consequence of the corresponding inverse symmetry
of the electromagnetic field (F → 1/F, where F ≡ F µνFµν) of the NLED
theory presented here. Such sequence collapse-bouncing-expansion-acceleration-
re-bouncing-collapse constitutes a basic unitary element for the structure of
the universe that can be repeated indefinitely yielding what we call a Cyclic
Magnetic Universe (see Appendix).

Short comment

In the last years there has been increasing of interest on the cosmological
effects induced by Nonlinear Electrodynamics (NLED). The main reason for
this is related to the drastic modification NLED provokes in the behavior of
the cosmological geometry in respect to two of the most important questions of
standard cosmology, that is, the initial singularity and the acceleration of the
scale factor. Indeed, NLED provides worthwhile alternatives to solve these two
problems in a unified way, that is without invoking different mechanisms for
each one of them separately. Such economy of hypotheses is certainly welcome.
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The partial analysis of each one of these problems was initiated by our group
in ICRA-Br. In this workk we present a new cosmological model, that unifies
both descriptions.
The general form for the dynamics of the electromagnetic field, compatible

with covariance and gauge conservation principles reduces to L = L(F ), where
F ≡ F µνFµν . We do not consider here the other invariant G ≡ F µνF ∗

µν con-
structed with the dual, since its practical importance disappears in cosmologi-
cal framework once in our scenario the average of the electric field vanishes in
a magnetic universe as we shall see in the next sections. Thus, the Lagrangian
appears as a regular function that can be developed as positive or negative
powers of the invariant F. Positive powers dominate the dynamics of the gravi-
tational field in the neighborhood of its moment of extremely high curvatures.
Negative powers control the other extreme, that is, in the case of very weak
electromagnetic fields. In this case as it was pointed out previously it modifies
the evolution of the cosmic geometry for large values of the scale factor, inducing
the phenomenon of acceleration of the universe. The arguments presented make
it worth considering that only the averaged magnetic field survives in a FRW
spatially homogeneous and isotropic geometry. Such configuration of pure aver-
aged magnetic field combined with the dynamic equations of General Relativity
received the generic name of Magnetic Universe.
The most remarkable property of a Magnetic Universe configuration is the

fact that from the energy conservation law it follows that the dependence on
time of the magnetic field H(t) is the same irrespective of the specific form
of the Lagrangian. This property allows us to obtain the dependence of the
magnetic field on the scale factor a(t), without knowing the particular form
of the Lagrangian L(F ). Indeed, as we will show later on, from the energy-
momentum conservation law it follows that H = H0 a

−2. This dependence is
responsible for the property which states that strong magnetic fields dominates
the geometry for small values of the scale factor; on the other hand, weak fields
determines the evolution of the geometry for latter eras when the radius is big
enough to excite these terms.
In order to combine both effects, here we will analyze a toy model. The sym-

metric behavior of the magnetic field in both extremes – that is for very strong
and very weak regimes – allows the appearance of a repetitive configuration of
the kind exhibited by an eternal cyclic universe.
Negative power of the field in the Lagrangian of the gravitational field was

used in attempting to explain the acceleration of the scale factor of the universe
by modification of the dynamics of the gravitational field by adding to the
Einstein-Hilbert action a term that depends on negative power of the curvature,
that is

S =
M2

Pl

2

∫ √−g
(
R− α4

R

)
d4x,

Although this Lagrangian was shown to be in disagreement with solar system
observations, it started a program which introduced polynomial Lagrangian of
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the form ∑

n

cnR
n

containing positive and negative values of n.
This modification introduced an idea that is worth to be generalized: the

dynamics should be invariant with respect to the inverse symmetry transforma-
tion. In other words,if X represents the invariant used to construct a Lagrangian
for a given field, the Action should be invariant under the map X→ 1/X. Since
the Electrodynamics is the paradigm of field theory, one should start the exam
of such a principle into the realm of this theory. In other words we will deal
here with a new symmetry between strong and weak electromagnetic field. In a
previous work, a model assuming this idea was presented and its cosmological
consequences analyzed. In this model, the action for the electromagnetic field
was modified by the addition of a new term, namely

S =

∫ √−g(−F
4
+
γ

F
)d4x.

This action yields an accelerated expansion phase for the evolution of the uni-
verse, and correctly describes the electric field of an isolated charge for a suffi-
ciently small value of parameter γ. The acceleration becomes a consequence of
the properties of this dynamics for the situation in which the field is weak.
In another cosmological context, in the strong regime, it has been pointed out

in the literature by us, that NLED can produces a bouncing, altering another
important issue in Cosmology: the singularity problem. In this article we would
like to combine both effects improving the action to discuss the consequences of
NLED for both, weak and strong fields.
It is a well-known fact that under certain assumptions, the standard cosmolog-

ical model unavoidably leads to a singular behavior of the curvature invariants
in what has been termed the Big Bang. This is a highly distressing state of
affairs, because in the presence of a singularity we are obliged to abandon the
rational description of Nature. It is possible that a complete quantum cosmol-
ogy could describe the state of affairs in a very different and more complete way.
For the time being, while such complete quantum theory is not yet known, one
should attempt to explore alternatives that are allowed and that provide some
sort of phenomenological consequences of a more profound theory.
It is tempting then to investigate how NLED can give origin to an unified sce-

nario that not only accelerates the universe for weak fields (latter cosmological
era) but that is also capable of avoiding an initial singularity as a consequence
of its properties in the strong regime.
Scenarios that avoid an initial singularity have been intensely studied over

the years. As an example of some latest realizations we can mention the pre-
big-bang universe and the ekpyrotic universe. While these models are based on
deep modifications on conventional physics, that are extremely difficult to be
observed, the model we present here relies instead on the electromagnetic field.
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The new ingredient that we introduce concerns the dynamics that is rather
different from that of Maxwell in distinct regimes. Specifically, the Lagrangian
we will work with is given by

LT = α2 F 2 − 1

4
F − µ2

F
+
β2

F 2
. (4.2)

The dimensional constants α, β and µ are to be determined by observation. Thus
the complete dynamics of electromagnetic and gravitational fields are governed
by Einstein equations plus LT .
We shall see that in Friedmann-Robertson-Walker (FRW) geometry we can

distinguish four typical eras which generate a basic unity of the cosmos (BUC)
that repeat indefinitely. The whole cosmological scenario is controlled by the
energy density ρ and the pressure p of the magnetic field. Each era of the BUC
is associated with a specific term of the Lagrangian. As we shall see the con-
servation of the energy-momentum tensor implies that the field dependence on
the scale factor yields that the invariant F is proportional to a− 4. This depen-
dence is responsible by the different dominance of each term of the Lagrangian
in different phases. The first term α2F 2 dominates in very early epochs allowing
a bouncing to avoid the presence of a singularity. Let us call this the bounc-

ing era. The second term is the Maxwell linear action which dominates in the
radiation era. The inverse term µ2/F dominates in the acceleration era.
Finally the last term β2/F 2 is responsible for a re-bouncing. Thus each BUC
can be described in the following way:

• The bouncing era: There exists a collapsing phase that attains a minimum
value for the scale factor aB(t);

• The radiation era: after the bouncing, ρ+3p changes the sign; the universe
stops its acceleration and start expanding with ä < 0;

• The acceleration era: when the 1/F factor dominates the universe enters
an accelerated regime;

• The re-bouncing era: when the term 1/F 2 dominates, the acceleration
changes the sign and starts a phase in which ä < 0 once more; the scale
factor attains a maximum and re-bounces

The universe starts a collapsing phase entering a new bouncing era. This unity
of four stages, the BUC, constitutes an eternal cyclic configuration that repeats
itself indefinitely.
The plan of the work is as follows. First we review the Tolman process of

average in order to conciliate the energy distribution of the electromagnetic field
with a spatially isotropic geometry, presents the notion of the Magnetic Uni-
verse and its generic features concerning the dynamics of electromagnetic field
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generated by a Lagrangian L = L(F ). Then we present the conditions of bounc-
ing and acceleration of a FRW universe in terms of properties to be satisfied by
L. Later on we introduce the notion of inverse symmetry of the electromagnetic
field in a cosmological context. This principle is used to complete the form of
the Lagrangian that guides the combined dynamics of the unique long-range
fields yielding a spatially homogeneous and isotropic nonsingular universe. We
present then a complete scenario consisting of the four eras: a bouncing, an
expansion with negative acceleration, an accelerated phase and a re-bouncing.
Finally let us point out that although the total Lagrangian of NLED seems at
first sight to induce an energy which is not strictly positive definite, this is not
the case in the actual toy model. Furthermore, even in the case of a static
spherically symmetric field of a charged particle, the negative contribution to
the total energy - as measured in the asymptotic spatial infinity - reduces to
a finite constant depending only on the free parameters of the theory. Thus,
as it was done by Born and Infeld in their NLED, this constant can be ruled
out by the addition of a constant term in the Lagrangian, which do not affect
the dynamics of the electromagnetic field and makes the total energy positive
definite.

4.8. Higgs mechanism without Higgs boson

We analyze the properties of the self-interaction of a spinor field Ψ driven by
Heisenberg dynamics. The system has global γ5−invariance. It is possible
to generalize this symmetry for a local space-time dependence by a minimal
coupling of the axial vector constructed with the spinor field to a massless gauge
vector fieldWµ. As a consequence of this coupling the gauge field acquires a mass
when Ψ is in its fundamental state. We can interpret this situation in terms of
Higgs mechanism once the mass of the gauge field appears due to the non-linear
Heisenberg dynamics that allows an apparent bosonisation which becomes the
real vehicle for the generation of the effective mass.

4.9. Spinor theory of Gravity

From Einstein Equivalence Principle (EEP) it follows that universality of grav-
itational processes leads naturally to its identification to a metric tensor gµν .
However anyone that accepts this interpretation of the EEP should ask, be-
fore adopting the General Relativity approach the following question: giving
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the observational fact that any piece of matter/energy provokes a modification
of the geometry in which this piece is merged, could one be led to the unique
conclusion that this modification is driven by a differential equation containing
derivatives up to second order of the metric tensor and by properties of the mat-
ter that represents its energy distribution? Should one be obliged to conclude
that there is no other logical way to understand this fact? Is there a unique and
only way that compels any sort of gravitationally interacting matter to mod-
ify space-time geometry through a direct relation between a continuous local
modification of the geometry and the corresponding matter-energy content? In
other words, are we contrived to accept that geometry is also a physical com-
ponent of nature, requiring unequivocally a dynamical equation itself? Is this
the unique way to implement the Equivalence Principle? General Relativity
is a complete realization of EEP that answers yes to these questions. These
lectures will deal with Pre-Gravity Theory, which provides a distinct and com-
petitive way to implement EEP which answers no to all these questions. In
Pre-Gravity the gravitational field is represented in terms of two fundamental
spinor fields ΨE and ΨN . Its origins goes back to a complementary view of EEP,
according to which the geometrical field is an induced quantity that depends
on some intimate microscopic sub-structure. This sub-structure does not have
by itself a geometric origin but instead it is a matter field. We could say that
GR is based on a vision according to which space-time is to be understood as
the arena of Physics (in Wheeler’s words) and gravity is nothing but the conse-
quence of a direct modification of the intrinsic geometry of such an arena. PG
on the other hand, considers that the arena contains only matter and energy
and the geometry is nothing but a specific way related to these real quantities
or substances interacts among themselves. In this way, in Pre-gravity it has no
practical sense to attribute a dynamics to the geometry. Its evolution is just a
natural consequence of the dynamics of matter interacting gravitationally, as we
shall see. Accepting the idea that the metric tensor is a derived quantity that
is, it is not an independent dynamical variable, then we face the question: what
should be the intermediate dynamical variables that represents the gravitational
phenomenon? In his analysis of similar question, Feynmann argued against the
possibility to identify such dynamical entity to different kinds of continuum
fields like scalar, spinor and vector. Let us review this analysis. The argument
against the scalar field rests on the impossibility of describe the influence of
gravity in photon propagation. Accepting that the net effect of a scalar field
should produce only conformally flat geometries then it follows that conformal
invariance of Maxwell electrodynamics imply the absence of any direct influence
of gravity on photon propagation. This was ruled out by the Sobral observa-
tion. The impossibility to identify gravity to vector field is related to the purely
attractive effect of gravity. For neutrino-like field the Feynmann argument rests
on the impossibility of having a 1/r static potential. Then he concludes that
only a tensorial field ϕµν could fulfill this criteria which led that the dynami-
cal quantity of gravitational field has to be identified with the metric tensor.
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The Spinor Theory of Gravity provides a distinct answer and circumvent these
difficulties.

4.10. The Spectrum of Scalar Fluctuations Using

Quasi- Maxwellian Formalism

Since the pioneer work of Lifshitz [1] many studies have been devoted to the sub-
ject of linear perturba- tions of spatially homogeneous and isotropic universes.
There are essentially two approaches by which the per- turbations theory can be
tackled. One started by Lif- shitz, is based on small variations of the metric ten-
sor and deals directly with the eld equations of Gen- eral Relativity. The second
started by Hawking[2] is based on small variations of the curvature tensor and
use the Quasi-Maxwell equa- tions of gravity, based in the Bianchi-Identity.

The first one has the disadvantage that the metric tensor is not a physically
sig- nificant quantity and it is plagued by gauge modes. This method has been
improved by several authors and a gauge-invariant approach has been developed
in a sem- inal paper. The gauge invariant variables are con- structed with linear
combinations of gauge dependent perturbations, the dicult is that the physical
and geo- metrical meaning of the resulting quantities is obscure[5]. Although
there is no consistent quantum theory of grav- ity, perturbations induced by
gravitational waves can be quantized in a consistent manner, using the method
based on the potential tensor g. This construction has been generalized to in-
clude linearized density pertur- bations and the resulting theory has been largely
used to model the origin of structures and to describe its evolu- tion in inationary
universe models. The other attempt forge to circumvent the dicul- ties intro-
duced by the gauge-dependent variables, is not based on the gauge variables but
on the covariant curva- ture variables that are null in the background and has a
direct geometrical meaning. This work was extended in ,but still their analysis
include contrast density and others gauge-dependent variables. This approach
was improved by Ellis and co-workers that substi- tuted the gauge-dependent
variables by gauge invariant and covariant new variables with transparent phys-
ical or geometrical meaning. Another attempt to overcome the diculties by the
presence of remanent gauge-dependent variables, is to eliminate the gauge de-
pendent variables used to describe the perturbations and present a closed set
of gauge invariant variables that form a consistent dynamical system. This was
done in a se- ries of papers. The closed set of gauge inde- pendent variables in-
clude only direct observable variables and does not require the knowledge of the
components of perturbed metric. The set of variables used constitutes a planar
dynamical system. A re-parametrization of these variables allows to establish a
gauge-invariant Hamilto- nian treatment for the perturbations and to construct
a consistent quantum theory. In this paper we used this method to investigate
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perturbations of a pure geomet- ric cosmological model, used has a simple toy
model, to describe a dynamical scenario with bounce for the evo- lution of the
universe. Our main interest is to obtain the scalar spectrum of the perturbations
of the manifold. This perturbation can sow the large-scale structures in a more
complete and realistic model.The toy model used to represent the background
is asymptotic at in the inn- ity pass and in the innity future.The initial uctu-
ation in the past are produced by the quantum uctuations of the vacua. The
gauge-invariant variable forge in [7] to described perturbations of a background
scalar eld in inationary models cannot be used to propagate these perturbations
across the bounce. This is because the variable is not dened at the minimum of
the scalar fac- tor. This diculty can be overcame has was done in references [22,
23]. In this paper we decide to used the method of perturbations developed in
[16] because be- yond the properties of been gauge independent the vari- ables
are well defined across the bounce.

4.11. Gravitational Waves in Singular and

Bouncing FLRW Universes

We investigate the propagation of gravitational waves in two models belonging
to the Friedman-Lemâıtre-Robertson-Walker (FLRW) class of cosmologies: the
singular Einstein-Maxwell Universe (EMU), which has the electromagnetic field
described by Maxwell’s electrodynamics as the source of its geometry, and the
bouncing Nonlinear Electrodynamics Universe (NLEU), which has the electro-
magnetic field described by a non-linear generalization of Maxwell’s electrody-
namics as the source of its geometry. We work with an explicitly gauge indepen-
dent formulation of cosmological perturbations in FLRW models and analyze
the qualitative features of the dynamical system that describes the propagation
of primordial tensorial perturbations in both geometries. Based on this analy-
sis we show that gravitational waves generated near a singularity or a bounce
exhibit qualitatively different behavior.

4.12. Cosmic Phenomenology

This research focuses on the connection among models and observations of the
Universe, i.e. cosmic phenomenology. Concerning this project, M Makler have
been involved in three main research areas: the Large Scale Structure of the
Universe, Dark Matter and Dark Energy Unification, and Gravitational Lens-
ing. More recently, we have used the outcome of cosmological N-body simula-
tions to search for signatures of turbulent processes (see Caretta et al. 2008).
He is advising a PhD thesis that addresses the abundance of galaxy groups
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and clusters and its connections to cosmological models, with a focus on the
uncertainties and biases induced by several observational aspects, such as the
mass-observable relation.I continued to work on a framework to unify Dark Mat-
ter and Dark Energy. An elegant implementation this idea is provided by scalar
fields with noncanonical kinetic terms, such as the Extended Born Infeld (EBI)
model proposed in Novello et al. (2005). Recently, we have explored the EBI
model in the full range of its parameters and compared with SNIa data (C.
Furlanetto, MSc thesis, ICRA/CBPF, 2008). More recently he has been deeply
involved with cosmological and astrophysical applications of gravitational lens-
ing, more specifically gravitational arcs, computing the arc abundance and arc
cross sections, as well as in observational aspects, such as a search for arcs in
astronomical images (Estrada et al. 2007). We are also making progress in the
theoretical modeling of arc statistics and investigating its uses for cosmology
and astrophysics (see, e.g. Caminha et al. 2008). We have developed numerical
a code to simulate gravitational arcs, the AddArcs code, which can be used
to test and calibrate the semi-analytic modeling and can be used to make pre-
dictions about arc statistics and test arcfinding codes. We have continued to
devote a substantial part of my time to the participation in the Dark Energy
Survey international collaboration, in which the admission of the DES-Brazil
consortium was pioneered by ICRA-Brasil. We are actively working both on
the science related to DES as well as on the software to be used for the science
analysis. Our main focus is on the unique potential for gravitational lensing
provided by this project.Our ongoing work on gravitational arcs was recognized
with the creation of the DES Strong Lensing Study Group, of which M Makler
became one of the co-organizers (together with Elizabeth Buckley-Geer, from
Fermilab). Besides investigating the prospects of DES for strong lensing and
preparing tools for the scientific exploitation of this survey, we are also working
with current data from other surveys, like the Sloan Digital Sky Survey (see,
e.g. Estrada et al. 2007) and also the Principal Investigator of a project named
SOGRAS to observe 60 galaxy clusters with the SOAR telescope. Up to Jan-
uary 2009 18 clusters were observing and we are in the process of reducing this
data.One of our contributions to DES is the development of a whole suite of ap-
plications for Strong Lensing studies named SLtools, of which the AddArcs code
is one of its subproducts. We are also working on novel models to identify and
characterize gravitational arcs in astronomical images.Finally, we are making
an effort to develop a high performance computational infrastructure for cos-
mological and astrophysical applications at ICRA-Brasil. We have built a small
computing cluster with resources from ICRA/CBPF and personal grants. This
machine has 36 computing nodes and is already available to the community. A
larger infrastructure is being purchased with resources from FINEP (about US$
200.000) a third of which will be dedicated to cosmology and astrophysics.
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6. Mach or Higgs? The
mechanisms to generate mass

6.1. Introduction

The purpose of these notes is to compare the two known mechanisms to generate
mass of the elementary constituents of all bodies, the basic bricks of which will
be taken as representations of the Lorentz-Poincaré group and we will analyze
them as scalar, spinor, vector and tensor fields. We shall see that in both
cases the origin of the mass of any body A depends on its interaction with its
surroundings yielding an overall effect (described either as a scalar field – in
the case of the Higgs mechanism – or as the metric tensor of the geometry of
space-time - in the case of the gravitational origin) on A which is represented
by a distribution of energy given by the form

Tµν = λ gµν (6.1)

In the literature concerning General Relativity this form of energy-momentum
tensor is attributed to the cosmological constant introduced by Einstein in order
to be able to construct a model for the geometry of the universe. In the realm
of quantum field theory, such distribution is identified to the vacuum. It is true
that if one considers the Machian point of view that the inertia of a body A
depends on the energy distribution of all others bodies in the universe, then λ
is to be interpreted as the cosmological constant [15].
These two mechanisms that contemplate the possibility of determining the

mass of any body from elementary principles, are associated to two distinct
universal interactions driven by one of the two fields:

• Gravitational field;

• Scalar field.

The idea of using a scalar field to be at the origin of the mass appeared in the
domain of high energy physics and it received the name ”Higgs mechanism”.
For the time being there is no evidence of the existence of such scalar in Nature
and huge experiments - the LHC experiment – are at this very moment in the
verge to be realized in order to prove that such scalar field exists [5], [19].
On the other hand, the relationship of mass with gravity is a very old one and

its deep connection has been emphasized in a qualitative way a huge number of
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times. We will concentrate our analysis only on a particular process that admits
a systematic realization and allows for a quantification.
Although the theory of General Relativity may be understood as completely

independent from the Machian idea that inertia of a body A is related to the
global distribution of energy of all particles existing in the universe, we must
recognize its historical value in the making the ideology that enabled Einstein
to start his journey toward the construction of a theory of gravitation [6].
During the 20th century, the idea of associating the dependence of local char-

acteristics of matter with the global state of the universe came up now and then
but without producing any reliable mechanism that could support such proposal
[7]. Even the concept of mass – that pervades all gravitational processes – did
not find a realization of such dependence on global structure of the universe.
On the contrary, the most efficient mechanism and one that has performed
an important role in the field of microphysics came from elsewhere, namely the
attempt to unify forces of a non-gravitational character, such as long-range elec-
trodynamics with decaying phenomena described by weak interaction. Indeed,
the Higgs model produced an efficient scenario for generating mass to the vec-
tor bosons [2] that goes in the opposite direction of the proposal of Mach. This
mechanism starts with the transformation of a global symmetry into a local one
and the corresponding presence of vector gauge fields. Then, a particular form
of the dynamics represented by Lint(ϕ) of self-interaction of an associated scalar
field in its fundamental state represented by an energy-momentum tensor given
by Tµν = Lint(ϕ0) gµν appears as the vehicle which provides mass to the gauge
fields.
Recently a new mechanism for generation of mass that is a realization of

Mach’s idea was proposed [17]. The strategy used is to couple the field (scalar,
spinor [320], vector [321] and tensor) non minimally to gravity through the pres-
ence of terms involving explicitly the curvature of space-time. The distribution
of the vacuum energy of the rest-of-the-universe is represented by a cosmologi-
cal term Λ. The effect of Λ by the intermediary of the dynamics of the metric
of space-time in the realm of General Relativity is precisely to give mass to
the field. Although this mass depends on the cosmological constant, its value
cannot be obtained a priori [11].

6.2. The Higgs proposal

Consider a theory of a real scalar field ϕ described by the Lagrangian

L =
1

2
∂µϕ∂

µϕ− V (ϕ) (6.2)

where the potential has the form

V =
1

2
µ2 ϕ2 +

λ

4
ϕ4
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In the homogeneous case, in order to satisfy the equation of motion, the field
must be in an extremum of the potential, which is true for two classes of solution:
either

ϕ = 0

or

ϕ2
0 = −

µ2

λ
.

In order to be a minimum the constant µ2 must be negative. This is a problem,
once it should imply that the mass of the scalar field is imaginary! However,
one can avoid this difficulty in the following manner. Let us redefine the field
by introducing a new real variable χ :

ϕ = ϕ0 + χ,

where ϕ0 is a constant. Substituting this definition on Lagrangian (6.2) it follows

L =
1

2
∂µχ ∂

µχ+ µ2 χ2 − λ

4
χ4 − λϕ0 χ

3 +
µ4

4λ
(6.3)

This Lagrangian represents a real scalar field χ with real positive mass m2 =
−µ2 and extra terms of self-interaction. Note that in the Lagrangian it appears
a residual constant term representing a background constant negative energy
distribution

Tµν(residual) = −
µ4

4λ
gµν

In the realm of high energy physics it is considered that such term ... ” has
no physical consequences and can be dropped” [18]. We will come back to this
when we analyze its gravitational effects.
Note that now, the potential of field χ takes the form

V = m2 χ2 +
λ

4
χ4 + λϕ0 χ

3 + constant

Its minimum occurs for χ = 0. The others two extrema that exists for constant
values χ0 are points of maxima. The expansion of the field must be made (for
all calculations) around χ = 0 and not around ϕ = 0. The reason is that this
last is an unstable point and the series will suffer from convergence. Finally, we
note that the actual field χ has a real positive mass.

6.2.1. The case of complex field

Let us now turn to the case of a complex field. The Lagrangian for φ = φ1+ i φ2

is given by

L = ∂µφ
∗ ∂µφ− V (φ∗ φ) (6.4)
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where the potential has the form

V = µ2 φ∗ φ+ λ (φ∗ φ)2

It is convenient to write the field as

φ =
1√
2
(φ0 + χ) exp

i

φ0

θ(x)

The Lagrangian then becomes

L =
1

2
∂µχ ∂

µχ +
1

2

(φ0 + χ)2

φ2
0

∂µθ ∂
µθ

− µ2

2
(φ0 + χ)2)− h

4
(φ0 + χ)4 (6.5)

The extremum of the potential occurs for φ0+χ = 0. For µ2 > 0 this extremum
is a minimum.

6.2.2. From global to local symmetry

The theory of the complex field φ has a gauge invariance under the constant
map

φ′ = eiα φ.

This means that this transformation occurs in everyplace and does not dis-
tinguishes any point of space-time. If the parameter α becomes space-time
dependent the symmetry is broken. In order to restore the symmetry, one can
use the freedom of the electromagnetic field Aµ and couple this map with the
map

A
′

µ = Aµ −
1

e
∂µα.

This scheme was generalized for more general maps (non-abelian theory) by
Yang and Mills in the early 1954 for nonlinear fields, called generically gauge
fields. It is immediate to show that by minimal coupling of the scalar field with
a gauge field the symmetry is restored. The modification consists in the passage
from a global symmetry (valid for transformations that are the same everywhere)
to a local symmetry that depends on the space-time location. A global property
turns into a local one. It is like going from cosmological framework – that deals
with the global structure of space-time — to microphysics.

6.2.3. Mass for a vectorial boson

The interaction of the complex field φ with a vectorWµ through the substitution
of the derivatives of the scalar field ∂µ φ by (∂µ − ieWµ)φ using the minimum
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coupling principle, preserves the gauge invariance when the parameter α be-
comes a function of space-time α(x). This means that the dynamics is invariant
under the map

φ′ = φ exp i α(x)

W ′
µ = Wµ +

1

e
∂µα

The Lagrangian, after the above substitution of the field φ = φ0 + χ turns
into

L = − 1

4
F µν Fµν +

1

2
e2 (φ0 + χ)2WνW

ν

+
1

2
∂µχ ∂

µχ− V (χ)

+
1

2
(φ0 + χ)2 ∂µθ ∂

µθ (6.6)

Note that this represents the interaction of two real scalar fields χ and θ but
only the real field χ interacts with the massive vector boson. Due to the gauge
invariance, one can contemplate the possibility of choosing

α = − θ

φ0

and eliminate θ. The dynamics turn into

L = − 1

4
F µν Fµν +

e2 φ2
0

2
WνW

ν

+
1

2
∂µχ ∂

µχ− V (χ)

+ (e2 ϕ0 χ +
e2

2
χ2)WνW

ν (6.7)

that represents a massive vector field interacting non-minimally with a real
scalar field. Note that one of the degree of freedom of the theory – represented
by the scalar field θ(x) — was eliminated. Indeed, it was transformed into an
extra degree of freedom of the massive vector field (that gained one more degree
of liberty going from 2 to 3). The total number we had (two for the field φ
and two for the massless field Wµ) is preserved. It only changed the place. The
degree of freedom of θ was conceded to the (now) massive vector boson.

It is not difficult to generalize the above procedure for more than one vector
field in such a way that one of them remains massless. This was the procedure for
the case of the unified field theory of electro-weak interaction: the intermediary
boson gain a mass but the photon remains massless.
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6.2.4. Mass for a fermion

Let us couple this scalar field with a spinor Ψ through the Lagrangian

L =
1

2
∂µϕ∂

µϕ− V (ϕ) + LD − hϕ Ψ̄Ψ (6.8)

where LD is Dirac dynamics for massless free field. Making the same replacement
we made previously using χ instead of ϕ this theory becomes

L =
1

2
∂µχ ∂

µχ− V (χ) + LD − h (ϕ0 + χ) Ψ̄Ψ (6.9)

The equation for the spinor field becomes

iγµ∂µΨ− hϕ0Ψ− hχ Ψ̄Ψ = 0 (6.10)

which represents a spinor field of mass hϕ0 > 0 interacting with a scalar field
χ.

6.3. Who gives mass to the scalar field that give

mass for the vector and spinor fields?

In the precedent sections we described the Higgs model that produced an ef-
ficient scenario for generating mass to the vector bosons in the realm of high-
energy physics. At its origin appears a process relating the transformation of
a global symmetry into a local one and the corresponding presence of vector
gauge fields.
This mechanism appeals to the intervention of a scalar field that appears as

the vehicle which provides mass to the gauge vector field Wµ. For the mass to
be a real and constant value (a different value for each field) the scalar field ϕ
must be in a minimum state of its potential V. This fundamental state of the
self-interacting scalar field has an energy distribution given by Tµν = V (ϕ0) gµν .
A particular form of self-interaction of the scalar field ϕ allows the existence of a
constant value V (ϕ0) that is directly related to the mass ofWµ. This scalar field
has its own mass, the origin of which rests unclear. In [17] a new mechanism
depending on the gravitational interaction, that can provides mass to the scalar
field was presented. In these lectures we shall analyze this mechanism.
Although the concept of mass pervades most of all analysis involving gravi-

tational interaction, it is an uncomfortable situation that still to this day there
has been no successful attempt to derive a mechanism by means of which mass
is understood a direct consequence of a dynamical process depending on gravity
[13].
The main idea concerning inertia in the realm of gravity according to the

origins of General Relativity, goes in the opposite direction of the mechanism
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that we analyzed in the previous section in the territory of the high-energy
physics. Indeed, while the Higgs mechanism explores the reduction of a global
symmetry into a local one, the Mach principle suggests a cosmical dependence of
local properties, making the origin of the mass of a given body to depend on the
structure of the whole universe. In this way, there ought to exist a mechanism by
means of which this quantity - the mass – depends on the state of the universe.
How to understand such broad concept of mass? Let us describe an example of
such mechanism in order to see how this vague idea can achieve a qualitative
scheme [14].

6.3.1. Mass for scalar field: a trivial case

We start by considering Mach principle as the statement according to which
the inertial properties of a body A are determined by the energy-momentum
throughout all space. How could we describe such universal state that takes
into account the whole contribution of the rest-of-the-universe onto A ? There
is no simpler way than consider this state as the most homogeneous one and
relate it to what Einstein attributed to the cosmological constant or, in modern
language, the vacuum of all remaining bodies. This means to describe the
energy-momentum distribution of all complementary bodies of A as

Tµν = λ gµν

Let ϕ be a massless field the dynamics of which is given by the Lagrangian

Lϕ =
1

2
∂αϕ∂

αϕ

In the framework of General Relativity its gravitational interaction is given by
the Lagrangian

L =
1

κ0
R +

1

2
∂αϕ∂

αϕ+B(ϕ)R− λ

κ0
(6.11)

where for the time being the dependence of B on the scalar field is not fixed.
This dynamics represents a scalar field non-minimally coupled to gravity. The
cosmological constant is added by the reasons presented above and represents
the influence of the rest-of-the-universe on ϕ. We shall see that λ is the real
responsible to provide mass for the scalar field. This means that if we set λ = 0
the mass of the scalar field should vanish.
Independent variation of ϕ and gµν yields

�ϕ− RB′ = 0 (6.12)

α0 (Rµν −
1

2
Rgµν) = −Tµν (6.13)
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where we set α0 ≡ 2/κ0 and B′ ≡ ∂B/∂ϕ. The energy-momentum tensor is
given by

Tµν = ∂µϕ∂νϕ−
1

2
∂αϕ∂

αϕ gµν

+ 2B (Rµν −
1

2
Rgµν)

+ 2∇µ∇νB − 2�B gµν +
λ

κ0
gµν (6.14)

Taking the trace of equation (6.55) we obtain

(α0 + 2B)R = − ∂αϕ∂αϕ− 6�B +
4λ

κ0
(6.15)

Inserting this result on the equation (6.46 ) yields

�ϕ + Z = 0 (6.16)

where

Z ≡ B′

α0 + 2B

(
∂αϕ∂

αϕ+ 6�B − 4λ

κ0

)

or, equivalently,

Z =
B′

α0 + 2B

(
∂αϕ∂

αϕ(1 + 6B′′) + 6B′ �ϕ− 4λ

κ0

)

Therefore, the scalar field acquires an effective self-interaction through the non-
minimal coupling with the gravitational field. At this stage it is worth to select
among all possible candidates of B a particular one that makes the factor on
the gradient of the field to disappear in the expression of Z by setting

B = a+ b ϕ− 1

12
ϕ2

where a and b are arbitrary parameters. The quantity a makes only a re-
normalization of the constant 1/κ0 and parameter b is responsible for distin-
guishing different masses for different fields. Making a translation on the field

Φ = −ϕ + 6b

it follows
�Φ + µ2Φ = 0 (6.17)

where

µ2 =
2λ

3

κren
κ0

. (6.18)

where

κren =
1

α0 + 2a + 6b2
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Thus as a result of the above process the scalar field acquires a mass µ that
depends on λ. If λ vanishes then the mass of the field vanishes. The net effect
of the non-minimal coupling of gravity with the scalar field corresponds to a
specific self-interaction of the scalar field. The mass of the field appears only if
we take into account the existence of all remaining bodies in the universe in the
state in which all existing matter is on the corresponding vacuum. The values
of different masses for different fields is contemplated in the parameter b.

6.3.2. Mass for scalar field-II

Let us now analyze a more general scenario to provide mass to a scalar field.
We start from the Lagrangian that describes a massless field ϕ that is

Lϕ =
1

2
∂αϕ∂

αϕ

The gravitational interaction yields the modified Lagrangian

L =
1

κ
R +

1

2
W (ϕ) ∂αϕ∂

αϕ +B(ϕ)R− 1

κ
Λ (6.19)

where for the time being the dependence of B and W on the scalar field is not
fixed. We set ~ = c = 1.
This dynamics represents a scalar field coupled non-minimally with gravity.

There is no direct interaction between ϕ and the rest-of-the-universe (ROTU),
except through the intermediary of gravity described by a cosmological constant
Λ. Thus Λ represents the whole influence of the ROTU on ϕ.
Independent variation of ϕ and gµν yields

W �ϕ+
1

2
W ′ ∂αϕ∂

αϕ− B′R = 0 (6.20)

α0 (Rµν −
1

2
Rgµν) = −Tµν (6.21)

where α0 ≡ 2/κ and B′ ≡ ∂B/∂ϕ. The energy-momentum tensor defined by

Tµν =
2√−g

δ(
√−g L)
δgµν

is given by

Tµν = W ∂µϕ∂νϕ−
1

2
W ∂αϕ∂

αϕ gµν

+ 2B (Rµν −
1

2
Rgµν)

+ 2∇µ∇νB − 2�B gµν +
1

κ
Λ gµν (6.22)
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Taking the trace of equation (6.21) we obtain

(α0 + 2B)R = − ∂αϕ∂αϕ (W + 6B′′)− 6B′�ϕ + 4
Λ

κ
(6.23)

where we used that �B = B′ �ϕ +B′′ ∂αϕ∂
αϕ.

Inserting this result back on the equation (6.20 ) yields

M�ϕ + N ∂αϕ∂
αϕ−Q = 0 (6.24)

where

M ≡W +
6(B′)2

α0 + 2B

N ≡ 1

2
W ′ +

B′ (W + 6B′′)

α0 + 2B

Q =
4ΛB′

κ (α0 + 2B)

Thus, through the non-minimal coupling with the gravitational field the scalar
field acquires an effective self-interaction. At this point it is worth to select
among all possible candidates of B andW particular ones that makes the factor
on the gradient of the field to disappear on the equation of motion by setting
N = 0. This condition will give W as a function of B :

W =
2q − 6(B′)2

α0 + 2B
(6.25)

where q is a constant. Inserting this result into the equation (6.24) yields

�ϕ− 2Λ

q κ
B′ = 0. (6.26)

At this point one is led to set

B = −β
4
ϕ2

to obtain
�ϕ + µ2 ϕ = 0 (6.27)

where

µ2 ≡ β Λ

q κ
(6.28)

For the function W we obtain

W =
2 q − 3 β2 ϕ2

2α0 − βϕ2
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One should set 2q = α0 in order to obtain the standard dynamics in case β
vanishes. Using units were ~ = 1 = c we write

L =
1

κ
R +

2 q − 3 β2 ϕ2

2 (2α0 − βϕ2)
∂αϕ∂

αϕ− 1

4
β ϕ2R− Λ

κ

Thus as a result of the gravitational interaction the scalar field acquires a
mass µ that depends on the constant β and on the existence of Λ :

µ2 = β Λ (6.29)

If Λ vanishes then the mass of the field vanishes. The net effect of the non-
minimal coupling of gravity with the scalar field corresponds to a specific self-
interaction of the scalar field. The mass of the field appears only if we take
into account the existence of all remaining bodies in the universe — represented
by the cosmological constant — in the state in which all existing matter is on
the corresponding vacuum. The values of different masses for different fields is
contemplated in the parameter β.

6.3.3. Renormalization of the mass

The effect of the rest-of-the-universe on a massive scalar field can be analyzed
through the same lines as above. Indeed, let us consider the case in which there
is a potential V (ϕ)

L =
1

κ
R +

W

2
∂αϕ∂

αϕ+B(ϕ)R− V (ϕ)− Λ

κ
(6.30)

The equation for the scalar field is given by

W �ϕ +
1

2
W

′

∂α ϕ∂
α ϕ− B′

R + V
′

= 0 (6.31)

Use the equation for the metric to obtain the scalar of curvature in terms of the
field and Λ. It then follows that terms in ∂α ϕ∂

α ϕ are absent if we set

W =
2q − 6 (B

′

)2

α0 + 2B

where q is a constant. For the case in which B = −β ϕ2/4 and for the potential

V =
µ0

2
ϕ2

and choosing q = 1/κ (in order to obtain the standard equation of the scalar
field in case B = 0) yields

�ϕ+ (µ2
0 + β Λ)ϕ+

β µ2
0

4
κϕ3 = 0 (6.32)
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This dynamics is equivalent to the case in which the scalar field shows an effec-
tive potential (in absence of gravity) of the form

Veff = (µ2
0 + β Λ)

ϕ2

2
+
β µ2

0 κ

16
ϕ4

Thus the net effect of the gravitational interaction for the dynamics driven
by (6.30) is to re-normalize the mass from the bare value µ0 to the value

µ2 = µ2
0 + β Λ.

We can then contemplate the possibility that all bodies represented by a
scalar field could have the same bare mass and as a consequence of
gravitational interaction acquires a split into different values charac-
terized by the different values of β. This result is not exclusive of the
scalar field but is valid for any field.

6.4. The case of fermions

Let us now turn our attention to the case of fermions. The massless theory for
a spinor field is given by Dirac equation:

iγµ∂µΨ = 0 (6.33)

This equation is invariant under γ5 transformation. In order to have mass for
the fermion this symmetry must be broken. Who is the responsible for this?

Gravity breaks the symmetry

Electrodynamics appears in gauge theory as a mechanism that preserves a
symmetry when one pass from a global transformation to a local one (space-
time dependent map). Nothing similar with gravity. On the contrary, in the
generation of mass through the mechanism that we are analyzing here, gravity is
the responsible to break the symmetry. In the framework of General Relativity
the gravitational interaction of the fermion is driven by the Lagrangian

L =
i ~ c

2
Ψ̄γµ∇µΨ−

i

2
∇µΨ̄γ

µΨ

+
1

κ
R + V (Φ)R − 1

κ
Λ

+ LCT (6.34)

where the non-minimal coupling of the spinor field with gravity is contained in
the term V (Φ) that depends on the scalar

Φ ≡ Ψ̄Ψ
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which preserves the gauge invariance of the theory under the map Ψ→ exp(i θ) Ψ.
Note that the dependence on Φ on the dynamics of Ψ breaks the chiral invariance
of the mass-less fermion, a condition that is necessary for a mass to appear.
For the time being the dependence of V on Φ is not fixed. We have added

a counter-term LCT for reasons that will be clear later on. On the other hand,
the form of the counter-term should be guessed, from the previous analysis that
we made for the scalar case, that is we set

LCT = H(Φ) ∂µΦ ∂
µΦ (6.35)

This dynamics represents a massless spinor field coupled non-minimally with
gravity. The cosmological constant represents the influence of the rest-of-the-
universe on Ψ.
Independent variation of Ψ and gµν yields

iγµ∇µΨ+ (RV ′ −H ′ ∂µΦ ∂
µΦ− 2H�Φ) Ψ = 0 (6.36)

α0 (Rµν −
1

2
Rgµν) = −Tµν (6.37)

where V ′ ≡ ∂V/∂Φ. The energy-momentum tensor is given by

Tµν =
i

4
Ψ̄γ(µ∇ν)Ψ−

i

4
∇(µΨ̄γν)Ψ

+ 2V (Rµν −
1

2
Rgµν) + 2∇µ∇νV − 2�V gµν

+ 2H ∂µΦ ∂νΦ−H ∂λΦ ∂
λΦ gµν +

α0

2
Λ gµν (6.38)

Taking the trace of equation (6.37) we obtain after some algebraic manipula-
tion:

(α0 + 2V + V ′)R = H ′ Φ ∂αΦ ∂
αΦ

+ 2H Φ�Φ− 6�V + 2α0Λ (6.39)

Inserting this result back on the equation (6.36) yields

iγµ∇µΨ+
(
X ∂λΦ ∂

λΦ + Y�Φ
)
Ψ+ ZΨ = 0 (6.40)

where

Z ≡ 2α0 Λ V
′

Q

X =
V ′ (ΦH ′ − 2H − 6V ′′)

Q
−H ′

Y =
V ′ (2H Φ− 6V ′)

Q
− 2H
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where Q ≡ α0 + 2V + ΦV ′.
At this stage it is worth selecting among all possible candidates of V and H

particular ones that makes the factor on the gradient and on � of the field to
disappear from equation (6.40). The simplest way is to set X = Y = 0 which
imply only one condition, that is

H =
− 3(V ′)2

α0 + 2V
(6.41)

The non-minimal term V is such that Z reduces to a constant, that is

V =
α0

2

[
(1 + σΦ)−2 − 1

]
(6.42)

Then it follows immediately that

H = −3α0 σ
2 (1 + σΦ)−4 (6.43)

where σ is a constant.
The equation for the spinor becomes

iγµ∇µΨ−mΨ = 0 (6.44)

where

m =
4 σΛ

κ c2
. (6.45)

Thus as a result of the above process the spinor field acquires a mass m that
depends crucially on the existence of Λ. If Λ vanishes then the mass of the field
vanishes. The non-minimal coupling of gravity with the spinor field corresponds
to a specific self-interaction. The mass of the field appears only if we take into
account the existence of all remaining bodies in the universe — represented by
the cosmological constant. The values of different masses for different fields are
contemplated in the parameter σ.
The various steps of our mechanism can be synthesized as follows:

• The dynamics of a massles spinor field Ψ is described by the Lagrangian

LD =
i

2
Ψ̄γµ∇µΨ−

i

2
∇µΨ̄γ

µΨ;

• Gravity is described in General Relativity by the scalar of curvature

LE = R;

• The field interacts with gravity in a non-minimal way described by the
term

Lint = V (Φ)R

where Φ = Ψ̄Ψ;
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• The action of the rest-of-the-universe on the spinor field, through the grav-
itational intermediary, is contained in the form of an additional constant
term on the Lagrangian noted as Λ;

• A counter-term depending on the invariant Φ is introduced to kill extra
terms coming from gravitational interaction;

• As a result of this process, after specifying V and H the field acquires a
mass being described as

iγµ∇µΨ−mΨ = 0

where m is given by equation (6.45) and is zero only if the cosmological
constant vanishes.

This procedure allows us to state that the mechanism proposed here is to be
understood as a realization of Mach principle according to which the inertia of a
body depends on the background of the rest-of-the-universe. This strategy can
be applied in a more general context in support of the idea that (local) properties
of microphysics may depend on the (global) properties of the universe. We will
analyze this in the next session (see also [320]).
Thus, collecting all these terms we obtain the final form of the Lagrangian

L =
i

2
Ψ̄γµ∇µΨ−

i

2
∇µΨ̄γ

µΨ

+
1

κ
(1 + σΦ)−2R − 1

κ
Λ

− 6

κ
σ2 (1 + σΦ)−4 ∂µΦ ∂

µΦ (6.46)

Some comments

• In the case σ = 0 the Lagrangian reduces to a massless fermion satis-
fying Dirac’s dynamics plus the gravitational field described by General
Relativity;

• The dimensionality of σ is L3;

• The ratio m/σ = 4Λ/κ c2 which has the meaning of a density of mass is
an universal constant. How to interpret such universality?

6.5. The case of vector fields

We start with a scenario in which there are only three ingredients: a massless
vector field, the gravitational field and an homogeneous distribution of energy -
that is identified with the vacuum. The theory is specified by the Lagrangian

L = −1
4
Fµν F

µν +
1

κ
R− Λ

κ
(6.47)
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The corresponding equations of motion are

F µν
;ν = 0

and

α0 (Rµν −
1

2
Rgµν) = −Tµν

where Fµν = ∇νWµ −∇µWν and α0 ≡ 2/κ.
In this theory, the vacuum Λ is invisible for Wµ. The energy distribution

represented by Λ interacts with the vector field only indirectly once it modifies
the geometry of space-time. In the Higgs mechanism this vacuum is associated
to a fundamental state of a scalar field ϕ and it is transformed in a mass term
for Wµ. The role of Λ is displayed by the value of the potential V (ϕ) in its
homogeneous state. We will now show that there is no needs to introduce any
extra scalar field by using the universal character of gravitational interaction to
generate mass for Wµ.
The point of departure is the recognition that gravity may be the real re-

sponsible for breaking the gauge symmetry. For this, we modify the above
Lagrangian to include a non-minimal coupling of the field Wµ to gravity in or-
der to explicitly break such invariance. There are only two possible ways for
this [16]. The total Lagrangian must be of the form

L = −1
4
Fµν F

µν +
1

κ
R

+
γ

6
RΦ + γ RµνW

µW ν

− Λ

κ
(6.48)

where we define

Φ ≡WµW
µ.

The first two terms of L represents the free part of the vector and the gravi-
tational fields. The second line represents the non-minimal coupling interaction
of the vector field with gravity. The parameter γ is dimensionless. The vacuum
– represented by Λ – is added by the reasons presented above and it must be
understood as the definition of the expression ”the influence of the rest-of-the-
universe on Wµ”. We will not make any further hypothesis on this [17].
In the present proposed mechanism, Λ is the real responsible to provide mass

for the vector field. This means that if we set Λ = 0 the mass of Wµ will vanish.
Independent variation of Wµ and gµν yields

F µν
;ν +

γ

3
RW µ + 2γ RµνWν = 0 (6.49)

1910



α0 (Rµν −
1

2
Rgµν) = −Tµν (6.50)

The energy-momentum tensor defined by

Tµν =
2√−g

δ(
√−g L)
δgµν

is given by

Tµν = Eµν

+
γ

3
∇µ∇νΦ−

γ

3
�Φ gµν +

γ

3
Φ (Rµν −

1

2
Rgµν)

+
γ

3
RWµWν + 2γRµ

λWλWν + 2γRν
λWλWµ

− γ RαβW
αW β gµν − γ∇α∇β (W

αW β) gµν

+ γ∇ν ∇β(WµW
β) + γ∇µ∇β(WνW

β)

+ γ�(WµWν) +
1

κ
Λ gµν (6.51)

where

Eµν = Fµα F
α
ν +

1

4
Fαβ F

αβ gµν

Taking the trace of equation (6.50) we obtain

R = 2Λ− κ γ∇α∇β (W
αW β) (6.52)

Then, using this result back into equation (6.49) it follows

F µν
;ν +

2 γ Λ

3
W µ

− κ γ2

3
∇α∇β (W

αW β)W µ

+ 2 γ Rµ
νW

ν = 0 (6.53)

The non-minimal coupling with gravity yields an effective self-interaction of the
vector field and a term that represents its direct interaction with the curvature
of space-time. Besides, as a result of this process the vector field acquires a
mass µ that depends on the constant γ and on the existence of λ. The term

2 γ Rµ
νW

ν

gives a contribution (through the dynamics of the metric equation (6.50) of γ Λ
yielding for the mass the formula

µ2 =
5

3
γ Λ (6.54)
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Note that the Newton’s constant does not appear in our formula for the mass.
The net effect of the non-minimal coupling of gravity with W µ corresponds to
a specific self-interaction of the vector field. The mass of the field appears only
if we take into account the existence of the rest-of-the-universe — represented
by Λ — in the state in which this environment is on the corresponding vacuum.
If Λ vanishes then the mass of the field vanishes.The values of different masses
for different fields are contemplated in the parameter γ.

Quantum perturbations

How this process that we have been examining here to give mass to all kind of
bodies should be modified in a quantum version? We note, first of all, that the
gravitational field is to be treated at a classical level, once there is neither theo-
retical nor observational evidence that exists a quantum version of gravitational
interaction. Thus, any modification of the present scheme means to introduce
quantum aspects of the vector field. This will not change the whole scheme
of generation of mass described above.Indeed, in the semi-classical approach in
which the matter field is quantized but the metric is not, the modification of
the equation of general relativity becomes

α0 (Rµν −
1

2
Rgµν) = − < Tµν > (6.55)

where the field is in a given specific state. Throughout all the process of grav-
itational interaction the system does not change its state, allowing the same
classical treatment as above.

6.6. The case of spin-two field

As in the previous cases we start with a scenario in which there are only three
ingredients: a linear tensor field, the gravitational field and an homogeneous
distribution of energy identified with the vacuum. We note that there are two
possible equivalent ways to describe a spin-two field that is:

• Einstein frame

• Fierz frame

according we use a symmetric second order tensor ϕµν or the third-order tensor
tensor Fαβλ. Although the Fierz representation is not used for most of the works
dealing with spin-2 field, it is far better than the Einstein frame when dealing
in a curved space-time[23]. Thus, let us review briefly the basic properties of
the Fierz frame1. We start by defining a three-index tensor Fαβµ which is anti-
symmetric in the first pair of indices and obeys the cyclic identity:

Fαµν + Fµαν = 0, (6.56)

1We use the notation A(αBβ) = AαBβ +AβBα, A[αBβ] = AαBβ −AβBα.
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Fαµν + Fµνα + Fναµ = 0. (6.57)

This expression implies that the dual of Fαµν is trace-free:

∗
F

αµ
µ = 0, (6.58)

where the asterisk represents the dual operator, defined in terms of ηαβµν by

∗
F

αµ
λ ≡

1

2
ηαµνσ F

νσ
λ.

The tensor Fαµν has 20 independent components. The necessary and sufficient
condition for Fαµν to represent an unique spin-2 field (described by 10 compo-
nents) is 2

∗
F

α(µν)
,α = 0, (6.59)

which can be rewritten as

Fαβ
λ
,µ + Fβµ

λ
,α + Fµα

λ
,β −

1

2
δλα(Fµ,β − Fβ,µ) +

−1
2
δλµ(Fβ,α − Fα,β)−

1

2
δλβ(Fα,µ − Fµ,α) = 0. (6.60)

A direct consequence of the above equation is the identity:

F αβµ
,µ = 0 . (6.61)

We call a tensor that satisfies the conditions given in the Eqns.(6.56), (6.57) and
(6.59) a Fierz tensor. If Fαµν is a Fierz tensor, it represents an unique spin-2
field. Condition (6.59) yields a connection between the Einstein frame (EF)
and the Fierz frame (FF): it implies that there exists a symmetric second-order
tensor ϕµν that acts as a potential for the field. We write

2Fαµν = ϕν[α,µ] +
(
ϕ,α − ϕαλ,λ

)
ηµν

−
(
ϕ,µ − ϕµλ,λ

)
ηαν . (6.62)

where ηµν is the flat spacetime metric tensor, and the factor 2 in the l.h.s. is
introduced for convenience.
Taking the trace of equation (6.62) Fα ≡ Fαµνη

µν it follows that

Fα = ϕ,α − ϕαλ,λ,

where . Thus we can write

2Fαµν = ϕν[α,µ] + F[α ηµ]ν . (6.63)

2Note that this condition is analogous to that necessary for the existence of a potential Aµ

for the EM field, given by
∗

A αµ
,α = 0.
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Using the properties of the Fierz tensor we obtain the important identity:

F α
(µν),α ≡ − 2G(L)

µν , (6.64)

where G(L)
µν is the linearized Einstein tensor, defined by the perturbation gµν =

ηµν + ϕµν by

2G(L)
µν ≡ �ϕµν − ϕǫ(µ,ν) ,ǫ + ϕ,µν − ηµν

(
�ϕ− ϕαβ,αβ

)
. (6.65)

The divergence of F α
(µν),α yields Bianci identity:

F α(µν)
,αµ ≡ 0. (6.66)

Indeed,
F αµν

,αµ + F ανµ
,µα = 0. (6.67)

The first term vanishes identically due to the symmetric properties of the field
and the second term vanishes due to equation (E.96). Using Eqn.(6.64) the
identity which states that the linearized Einstein tensor G(L)

µν is divergence-
free is recovered.
We shall build now dynamical equations for the free Fierz tensor in flat space-

time. Our considerations will be restricted here to linear dynamics. The most
general theory can be constructed from a combination of the three invariants
involving the field. These are represented by A, B and W :

A ≡ Fαµν F
αµν , B ≡ FµF

µ,

W ≡ Fαβλ
∗
F

αβλ =
1

2
FαβλF

µνλ ηαβµν .

W is a topological invariant so we shall use only the invariants A and B. The
EOM for the massless spin-2 field in the ER is given by

G(L)
µν = 0. (6.68)

As we have seen above, in terms of the field F λµν this equation can be written
as

F λ(µν)
,λ = 0. (6.69)

The corresponding action takes the form

S =
1

k

∫
d4x (A−B). (6.70)

Then,

δS =

∫
F α (µν)

,α δϕµν d
4x. (6.71)

we obtain

δS = −2
∫
G(L)

µν δϕ
µν d4x, (6.72)
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where G(L)
µν is given in Eqn.(6.65).

Let us consider now the massive case. If we include a mass for the spin 2 field
in the Fierz frame, the Lagrangian takes the form

L = A−B +
m2

2

(
ϕµν ϕ

µν − ϕ2
)
, (6.73)

and the EOM that follow are

F α
(µν),α −m2 (ϕµν − ϕ ηµν) = 0, (6.74)

or equivalently,

G(L)
µν +

m2

2
(ϕµν − ϕ ηµν) = 0.

The trace of this equation gives

F α
,α +

3

2
m2 ϕ = 0, (6.75)

while the divergence of Eqn.(6.74) yields

Fµ = 0. (6.76)

This result together with the trace equation gives ϕ = 0.
In terms of the potential, Eqn.(6.76) is equivalent to

ϕ, µ − ϕǫµ ,ǫ = 0. (6.77)

It follows that we must have

ϕµν,ν = 0.

Thus we have shown that the original ten degrees of freedom (DOF) of Fαβµ
have been reduced to five (which is the correct number for a massive spin-2
field) by means of the five constraints

ϕµν ,ν = 0, ϕ = 0. (6.78)

Equation of spin-2 in curved background

The passage of the spin-2 field equation from Minkowski spacetime to arbi-
trary curved riemannian manifold presents ambiguities due to the presence of
second order derivatives of the rank two symmetric tensor ϕµν that is used in
the so called Einstein-frame (see for instance Aragone-Deser). These ambigui-
ties disappear when we pass to the Fierz frame representation that deals with
the three index tensor Fαµν as it was shown in Novello-Neves.
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There results a unique form of minimal coupling, free of ambiguities. Let us
define from ϕµν two auxiliary fields G(I)

µν and G(II)
µν through the expressions:

2G(I)
µν ≡

�ϕµν − ϕǫ(µ;ν);ǫ + ϕ;µν − ηµν
(
�ϕ− ϕαβ ;αβ

)
, (6.79)

2G(II)
µν ≡

�ϕµν − ϕǫ(µ;ǫ;ν) + ϕ;µν − ηµν
(
�ϕ− ϕαβ ;αβ

)
. (6.80)

These objects differ only in the order of the second derivative in the second term
on the r.h.s. of the above equations. The equation of motion free of ambiguities
concerns the tensor field

Ĝµν ≡
1

2

(
G(I)

µν +G(II)
µν

)
(6.81)

and is given by

Ĝµν +
1

2
m2 (ϕµν − ϕgµν) = 0. (6.82)

which is precisely the usual equations for massive spin-2 field.

Generating mass for the spin-2 field

We follow the same strategy as in the previous case and take the dynamics of
the spin-2 field as given by

L = Fαµν F
αµν − Fα F α +

1

κ
R

+ aRαµβν ϕ
αβ ϕµν

− Λ

κ
(6.83)

The equations of motion are given by:

F α
(µν);α + 2aRαµβν ϕ

αβ = 0, (6.84)

1

κ

(
Rµν −

1

2
Rgµν +

Λ

2
gµν

)
+ Tµν + a Yµν = 0 (6.85)

where the quantity Yµν is given by the variation of the non minimal coupling
term:

δ

∫ √−g Rαµβν ϕ
αβ ϕµν =

∫ √−g Yµν δgµν (6.86)

where Yµν is given in terms of Sαµβν defined as

Sαµβν ≡ ϕαβ ϕµν − ϕαν ϕβµ
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which has the symmetries:

Sαµβν = −Sαµνβ = −Sµαβν = Sβναµ.

A direct calculation yields

Y µν ≡ Sλµνǫ;ǫ;λ −
1

2
Rασβλ ϕ

αβ ϕσλ gµν

+
3

2
Rασβ

(µ ϕν)σ ϕαβ

− 1

2
Rασβλ ϕ

αβ ϕσλ gµν (6.87)

Let us remind that the Riemann curvature can be written in terms of its
irreducible quantities involving the Weyl conformal tensor Wασβλ and the con-
tracted Ricci tensor by the formula:

Rαµβν = Wαµβν

+
1

2
(Rαβ gµν +Rµν gαβ − Rαν gβµ −Rβµ gαν)

− 1

6
Rgαµβν . (6.88)

Then

Rαµβν ϕ
αβ ϕµν = Wαµβν ϕ

αβ ϕµν + (Rαβ

− 1

6
Rgαβ) (ϕϕ

αβ − ϕαλ ϕλβ). (6.89)

We can then re-write the equation of the spin-2 field as

F α
(µν);α −

aΛ

3
(ϕµν − ϕ gµν) + 2aWαµβν ϕ

αβ +Qµν = 0, (6.90)

where Qµν contain non-linear terms of interaction of the spin-2 field with gravity.

6.7. Generalized Mach’s principle

In this section we present an extension of Mach principle in similar lines as it
has been suggested by Dirac, Hoyle and others. This generalization aims to
produce a mechanism that transforms the vague idea according to which local
properties may depend on the universe’s global characteristics into an efficient
process. We will apply the strategy that we used in the precedent sections to
generate mass in order to elaborate such generalization.

The cosmological influence on the microphysical world: the case of
chiral-invariant Heisenberg-Nambu-Jona-Lasinio dynamics
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There have been many discussions in the scientific literature in the last decades
related to the cosmic dependence of the fundamental interactions. The most
popular one was the suggestion of Dirac – the so called Large Number Hypoth-
esis – that was converted by Dicke and Brans into a new theory of gravitation,
named the scalar-tensor theory. We will do not analyze any of these here. On
the contrary, we will concentrate on a specific self-interaction of an elementary
field and show that its correspondent dynamics is a consequence of a dynamical
cosmological process. That is, to show that dynamics of elementary fields in the
realm of microphysics, may depend on the global structure of the universe.
The first question we have to face concerns the choice of the elementary

process. There is no better way than start our analysis with the fundamental
theory proposed by Nambu and Jona-Lasinio concerning a dynamical model
of elementary particles [21]. Since the original paper until to-day hundreds of
papers devoted to the NJL model were published [20]. For our purpose here it
is enough to analyze the nonlinear equation of motion that they used in their
original paper as the basis of their theory which is given by

iγµ∇µΨ− 2s(A+ i B γ5)Ψ = 0

This equation, as remarked by these authors, was proposed earlier by Heisenberg
[1] although in a quite different context. We will not enter in the analysis of
the theory that follows from this dynamics. Our question here is just this: is it
possible to produce a model such that HNJL (Heisenberg-Nambu-Jona-Lasinio)
equation for spinor field becomes a consequence of the gravitational interaction
of a free massless Dirac field with the rest-of-the-universe? We shall see that
the answer is yes.
We used Mach’s principle as the statement according to which the inertial

properties of a body A are determined by the energy-momentum throughout all
space. We follow here a similar procedure and will understand the Extended
Mach Principle as the idea which states that the influence of the rest-of-the-
universe on microphysics can be described through the action of the energy-
momentum distribution identified with the cosmic form

TUµν = Λ gµν

Non minimal coupling with gravity

In the framework of General Relativity we set the dynamics of a fermion field
Ψ coupled non-minimally with gravity to be given by the Lagrangian (we are
using units were ~ = c = 1)

L = LD +
1

κ
R + V (X)R− 1

κ
Λ + LCT (6.91)

where

LD ≡
i

2
Ψ̄γµ∇µΨ−

i

2
∇µΨ̄γ

µΨ (6.92)

1918



The non-minimal coupling of the spinor field with gravity is contained in the
term V (X) and depends on the scalar X defined by

X = A2 +B2

where A = Ψ̄Ψ and B = iΨ̄ γ5Ψ. We note that we can write, in an equivalent
way,

X = Jµ J
µ

where Jµ = Ψ̄γµΨ. This quantity X is chiral invariant, once it is invariant under
the map

Ψ′ = γ5Ψ.

Indeed, from this γ5 transformation, it follows

A′ = −A, B′ = −B; then,X ′ = X.

The case in which the theory breaks chiral invariance and the interacting term
V depends only on the invariant A – is the road to the appearance of a mass
as we saw in the previous sections [320]. Here we start from the beginning with
a chiral invariant theory. For the time being the dependence of V on X is not
fixed. We have added LCT to counter-balance the terms of the form ∂λX ∂λX
and �X that appear due to the gravitational interaction. The most general
form of this counter-term is

LCT = H(X) ∂µX ∂µX (6.93)

We shall see that H depends on V and if we set V = 0 then H vanishes. This
dynamics represents a massless spinor field coupled non-minimally with gravity.
The cosmological constant represents the influence of the rest-of-the-universe on
Ψ.
Independent variation of Ψ and gµν yields

iγµ∇µΨ+ Ω(A+ i B γ5)Ψ = 0 (6.94)

where
Ω ≡ 2RV ′ − 2H ′ ∂µX ∂µX − 4H�X

α0 (Rµν −
1

2
Rgµν) = −Tµν (6.95)

where we set α0 ≡ 2/κ and V ′ ≡ ∂V/∂X. The energy-momentum tensor is given
by

Tµν =
i

4
Ψ̄γ(µ∇ν)Ψ−

i

4
∇(µΨ̄γµ)Ψ

+ 2V (Rµν −
1

2
Rgµν) + 2∇µ∇νV − 2�V gµν

+ 2H ∂µX ∂νX −H ∂λX ∂λX gµν +
α0

2
Λ gµν (6.96)
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Taking the trace of equation (6.95), after some simplification and using

�V = V ′ �X + V ′′ ∂µX ∂µX (6.97)

it follows

(α0 + 2V + 2 V ′X)R = (4HX − 6V ′)�X

+ (2H ′X − 6V ′′ − 2H) ∂αX ∂αX

+ 2α0 Λ (6.98)

Then

Ω = (M�X + N ∂µX ∂µX)

+
4α0 Λ V

′

α0 + 2V + 2 V ′X
(6.99)

where

M =
2V ′(4HX − 6V ′)

α0 + 2V + 2 V ′X
− 4H

N =
2V ′ (2XH ′ − 6V ′′ − 2H)

α0 + 2V + 2 V ′X
− 2H ′

Defining ∆ ≡ α0 + 2V + 2 V ′X we re-write M and N as

M = − 4

∆

(
3 V ′2 +H (α0 + 2V )

)

N = − 2

∆

(
3 V ′2 +H (α0 + 2V )

)′

Inserting this result on the equation (6.94) yields

iγµ∇µΨ+
(
M�X + N ∂λX ∂λX

)
Ψ+ Z (A + i B γ5)Ψ = 0 (6.100)

where

Z =
4α0 Λ V

′

∆
At this stage it is worth to select among all possible candidates of V and H

particular ones that makes the factor on the gradient and on � of the field to
disappear from equation (6.100).
The simplest way is to set M = N = 0, which is satisfied if

H = − 3 V ′2

α0 + 2V

Imposing that Z must reduce to a constant we obtain

V =
1

κ

[
1

1 + β X
− 1

]
. (6.101)

1920



As a consequence of this,

H = − 3 β2

2κ

1

(1 + β X)3
(6.102)

where β is a constant. Using equations 6.100) and 6.101) the equation for the
spinor becomes

iγµ∇µΨ− 2s(A+ i B γ5)Ψ = 0 (6.103)

where

s =
2 β Λ

κ(~ c)
. (6.104)

Thus as a result of the gravitational interaction the spinor field satisfies
Heisenberg-Nambu-Jona-Lasinio equation of motion. This is possible due to
the influence of the rest-of-the-Universe on Ψ. If Λ vanishes then the constant
of the self-interaction of Ψ vanishes.
The final form of the Lagrangian is provided by

L = LD +
1

κ (1 + βX)
R− 1

κ
Λ− 3β2

2κ

1

(1 + βX)3
∂µX ∂µX (6.105)

In this section we analyzed the influence of all the material content of the
universe on a fermionic field when this content is in two possible states: in
one case its energy distribution is zero; in another case it is in a vacuum state
represented by the homogeneous distribution Tµν = Λgµν . Note that when Λ
vanishes, the dynamics of the field is independent of the global properties of the
universe and it reduces to the massless Dirac equation

iγµ∇µΨ = 0

In the second case, the rest-of-the-universe induces on field Ψ the Heisenberg-
Nambu-Jona-Lasinio non-linear dynamics

iγµ∇µΨ− 2s (A+ iBγ5) Ψ = 0.

Such scenario shows a mechanism by means of which the rules of the micro-
physical world depends on the global structure of the universe. It is not hard to
envisage others situations in which the above mechanism can be further applied.

6.8. Appendix: Vacuum state in non-linear theories

Although the cosmological constant was postulated from first principles, quan-
tum field theory gave a simple interpretation of Λ by its association to the fun-
damental vacuum state. It is possible to describe its origin even classically as a
consequence of certain special states of matter. For instance, non linear theories
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produce classically a vacuum, defined by its distribution of energy-momentum
tensor provided by expression (6.1). Let us review very briefly how this occurs
in a specific example. We start by the standard definition of the symmetric
energy-momentum tensor as variation of the Lagrangian induced by variation
of the metric tensor, that is

Tµν =
2√−g

δL
√−g
δgµν

(6.106)

In order to present a specific example, let us concentrate on the case of electro-
magnetic field in which the Lagrangian depends only on the invariant F defined
by

F ≡ Fµν F
µν

Then, the expression of the energy-momentum tensor is given by

Tµν = −4LF Fµα Fαν − Lgµν . (6.107)

where LF = ∂L/∂F represents the derivative of the Lagrangian with respect to
the invariant F. The corresponding equation of motion of the field is provided
by

(LF F
µν); ν = 0. (6.108)

where the symbol ; represents covariant derivative. This equation admits a
particular solution when LF vanishes for non-null constant value F0 . When the
system is in this state, the corresponding expression of the energy-momentum
tensor reduces to

Tµν = Λ gµν

where
Λ = L0.

The consequences of this state in Cosmology due to non linear theories of
Electrodynamics was revisited recently (see [12]). A by-product is the emergence
of effective geometries that mimics gravitational processes like, for instance, non-
gravitational black holes or analogue expanding universes in laboratory.
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7. On a Geometrical Description of
Quantum Mechanics
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We show that Quantum Mechanics can be interpreted as a modification of
the Euclidean nature of 3-d space into a particular affine space, which we call Q-
wis. This is proved using the Bohm-de Broglie causal formulation of Quantum
Mechanics. In the Q-wis geometry, the length of extended objects changes from
point to point. In this formulation, deformation of physical distances are in the
core of quantum effects allowing a geometrical formulation of the uncertainty
principle.



7.1. Introduction

The early years of quantum mechanics were marked by intense debates and
controversies related to the meaning of the new behaviour of matter. While one
group was convinced that was unavoidable to abandon the classical picture, the
other group tried incessantly to save its main roots and conceptual pillars. To
be able to reproduce the atypical quantum effects, the latter group was forced to
introduce new ingredients such as de Broglie’s pilot wave [1]-[6] or Mandelung’s
hydrodynamical picture [7].

However, the lack of physical explanations for these ad hoc modifications
weakened these pictures. At the same time, the former group leaded by Schrödinger,
Bohr and Heisenberg was increasingly gaining new adepts until its climax in the
1927 Solvay’s conference when this picture was finally accepted as the orthodox
interpretation of quantum mechanics - the Copenhagen interpretation [8]-[10].

Notwithstanding, a marginal group of physicists continued to develop other
approaches [11]-[13] to describe quantum mechanics that are more adequate
to connect to a classical picture1. One of the most prominent amongst these
alternative interpretations is the causal interpretation of quantum mechanics
also known as Bohm-de Broglie interpretation [14]-[17].

The development of quantum cosmological scenario brought to light some
difficulties intrinsic to the Copenhagen interpretation. More specifically, the
measurement process in a quantum closed universe seems inevitably inconsis-
tent [341]-[20]. Fortunately, there are some alternative interpretations that are
consistently applied simultaneously to cosmology and to the micro-world. As
two examples we mention the many-worlds interpretation [341, 21, 22] and the
consistent histories formulation [23]-[26].

In the present work we will focus only on the Bohm-de Broglie interpretation
since it is amongst the well-defined interpretation that can be applied to any
kind of system, and up to date it is completely equivalent to the Copenhagen
interpretation when applied to the micro-world.

We will show that it is possible to interpret all quantum phenomena as a mod-
ification of the geometrical properties of the physical space. Hence, we will deal
with a generalization of the Euclidean geometry. Several papers in the litera-
ture have advocated a possible connection between non-Euclidean geometry and
quantum effects [2]-[35]. Despite the different approaches, a common feature of
all these works is the proposal of a new geometry that was first introduced by
Weyl [27]-[28]. The so-called Weyl geometry is a modification of a Riemannian
space-time to accommodate the conformal map as a pure gauge transformation.
As it is well known, this can be achieved only if not just the metric but all fields
are also conformally transformed. In addition, one has to redefine the covariant
derivative to maintain the Riemannian structure of the space-time.

1Since we are not concerned with relativistic phenomena, the term classical physics should
be understood as pre-relativistic physics unless otherwise specified.
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Instead of working with this Weyl geometry, we shall define a different space
where the connection cannot be specified solely in terms of the metric and
which we shall call Q-wis 2. There are at least two main differences. The Q-wis
is not conformally invariant nor there is any kind of geometrical gauge degree
of freedom. Furthermore, the covariant derivative is strictly defined only with
the connection so that the covariant derivative of the metric does not vanish.
Contrarily to the Weyl geometry, the affine degree of freedom of the Q-wis space
raises physical implication that allows us to re-interpret the quantum effects.
In fact, we shall propose a physical description of quantum effects through a
limitation of the classical standards, or in others words, through a limitation of
the Euclidean standards used to measure physical distances.

The appendix is reserved to develop in more detail the properties of a Q-wis
space but it is worth to mention its main difference from an Euclidean space
that is related to the notion of a standard ruler.

A Q-wis is a geometrical space endowed with an euclidian metric. Further-
more, this space also posses an extra degree of freedom, which allows the length
of a vector to change from point to point. This means that a ruler of length l if
parallel transported will change by an amount

δ l = l f, a dx
a . (7.1)

A Q-wis is distinguished precisely by the fact that the length of the ruler
transported along a closed curve does not change. Hence, if the change of the
ruler’s length is dl, for a closed path in Q-wis we have

∮
dl = 0 , (7.2)

which guarantees the uniqueness of any local measurement. The allowance of an
intrinsic modification of the standard rulers is the main geometrical hypothesis
of the present work. We shall argue how this geometrical modification can
be in the origin of quantum effects. For the sake of clarity we will deal with
the simplest system possible, namely an isolated point-like particle possibly
subjected to an external potential.

The outline of the article is as follows. In the next section we briefly review
the main points of quantum mechanics and in section Non-Euclidean geometry
we describe how to connect the Q-wis space to the quantum theory. We show
that quantum mechanics can be derived from a geometrical variational principle.
Then, in the conclusions we present our final remarks. The appendix is reserved
to describe the main properties of the Q-wis geometry.

2This name is an acronym for quantum weyl integrable space that is motivated from the
fact that it is similar to a Weyl integrable space and at the same time describes quantum
phenomena. Its mathematical properties are analysed in the appendix.
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7.2. Quantum Mechanics

Quantum mechanics is a modification of the classical laws of physics to in-
corporate the uncontrolled disturbance caused by the macroscopic apparatus
necessary to realize any kind of measurement. This statement, known as Bohr’s
complementary principle, contains the main idea of the Copenhagen interpre-
tation of quantum mechanics. The quantization program continues with the
correspondence principle promoting the classical variables into operators and
the Poisson brackets into commutation relations.
In this non-relativistic scenario, the Schrödinger equation establishes the dy-

namics for the wave function describing the system. Note that as in Newtonian
mechanics time is only a external parameter and the 3-d space is assumed to be
endowed with the Euclidean geometry.
Using the polar form for the wave function, Ψ = AeiS/~, the Schrödinger

equation can be decomposed in two equations for the real functions A (x) and
S (x)

∂S

∂t
+

1

2m
∇S.∇S + V − ~2

2m

∇2A

A
= 0 , (7.3)

∂A2

∂t
+∇

(
A2∇S

m

)
= 0 . (7.4)

Solving these two equations is completely analogous to solving the Schrödinger
equation. The probabilistic interpretation of quantum mechanics associate ‖Ψ‖2 =
A2 with the probability distribution function on configuration space. Hence, eq.
(D.7) has exactly the form of a continuity equation with A2∇S/m playing the
role of current density.

7.2.1. Bohm-de Broglie interpretation

The causal interpretation, which is an ontological hidden variable formulation
of quantum mechanics, propose that the wave function does not contain all the
information about the system.
An isolated system describing a free particle (or a particle subjected to a

potential V ) is defined simultaneously by a wave function and a point-like par-
ticle. In this case, the wave function still satisfies the Schrödinger equation but
it should also works as a guiding wave modifying the particle’s trajectory.
Note that eq.(7.3) is a Hamilton-Jacobi like equation with an extra term that

it is often called quantum potential

Q = − ~2

2m

∇2A

A
, (7.5)

while, as already mentioned, eq.(D.7) is a continuity-like equation. The Bohm-
de Broglie interpretation takes these analogies seriously and postulate an extra
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equation associating the velocity of the point-like particle with the gradient of
the phase of the wave function. Hence,

ẋ =
1

m
∇S . (7.6)

Integrating eq. (7.6) yields the quantum bohmian trajectories. The unknown
or hidden variables are the initial positions necessary to fix the constant of
integration of the above equation.
For the case of a spinless particle, the quantum potential is the sole responsible

for all novelties of quantum effects such as non-locality or tunnelling processes.
As a matter of fact, the Bohm-de Broglie interpretation has the theoretical
advantage of having a well formulated classical limit. Classical behaviour is
obtained as soon as the quantum potential, which has dimensions of energy,
becomes negligible compared to other energy scales of the system.
In what follows, we will show that it is possible to reinterpret quantum me-

chanics as a manifestation of non-Euclidean structure of the 3-dimensional space.
Hence, we propose a geometrical interpretation to describe quantum effects.

7.3. Non-Euclidean geometry

Since ancient times, Euclidean geometry was considered as the most adequate
mathematical formulation to describe the physical space. However, its validity
can only be established a posteriori as long as its construction yields useful
notions to connect physical quantities such as the Euclidean distance between
two given points.
Special relativity modified the notion of 3-dimensional Euclidean space to

incorporate time in a four-dimensional continuum (Minkowski spacetime). Later
on, General Relativity generalized the absolute Minkowski spacetime to describe
gravitational phenomena. General Relativity considers the spacetime manifold
as a dynamical field that can be deformed and stretched but in such a way
that it always preserves its Riemannian structure. It is worth noting that both
the Euclidean and Minkowskian spaces are nothing more than special cases of
Riemannian spaces.
Nonetheless, Riemannian manifold are not the most general type of geometri-

cal spaces. In the same way as above, Riemannian geometries can be understood
as a special subclass of a more general structure where the connection it is not
uniquely determined by the metric. Geometries where the connection is not just
the Christoffel’s symbol are known as affine space. As to the matter of which
geometry is actually realized in Nature, it has to be determined by physical
experiments.
Instead of imposing a priori that quantum mechanics has to be constructed

over an Euclidean background as it is traditionally done, we shall argue that
quantum effects can be interpreted as a manifestation of a non-Euclidean struc-
ture derived from a variational principle. The validity of the specific geometrical

1931



structure proposed can be checked a posteriori comparing it to the usual non-
relativistic quantum mechanics.
Thus, consider a point-like particle with velocity v = ∇S/m and subjected

to a potential V . We shall follow Einstein’s idea to derive the geometrical
structure of space from a variational principle by considering the connection as
an independent variable and hence by using Palatini’s variational procedure.
The validity of an action principle can only be justified a posteriori by deriving
the correct dynamical equation of motion but normally its formulation already
specifies the kinematical properties of the theory. In particular, we consider an
action that includes geometry and the particle’s lagrangian with the peculiarity
that the particle is non-minimally coupled to geometry through a scalar field Ω
which we shall show to be related to the affine structure of 3-d space. Thus we
define the action by

I =

∫
dtd3x

√
g
[
λ2Ω2R− Ω2Lm

]
, (7.7)

where the connection of the 3-d space Γijk, the Hamilton’s principal function S
and the scalar function Ω should be understood as independent variables. Each
term in equation (7.7) is defined as follows: we are considering the line element
in Cartesian coordinates given by

ds2 = gijdx
idxj = dx2 + dy2 + dz2 (7.8)

with
g = det gij . (7.9)

The Ricci curvature tensor is defined in term of the connection through

Rij = Γmmi ,j − Γmij ,m + ΓlmiΓ
m
jl − ΓlijΓ

m
lm (7.10)

and its trace defines the curvature scalar R ≡ gijRij which has dimensions of
inverse length squared, [R] = L−2. The constant λ2 has dimension of energy
times length squared, [λ2] = E.L2, and the particle’s Lagrangian is defined by
the Hamilton’s function through

Lm =
∂S

∂t
+

1

2m
∇S.∇S + V , (7.11)

where ∂S
∂t

is related to the particle’s total energy.
From equation (7.7), variation of the action I with respect to the independent

variables gives respectively (see appendix for details)

δΓijk : gij;k = −4 (lnΩ),k gij , (7.12)

where “;” denotes covariant derivative and a common “,” simple spatial deriva-
tive. Equation (8.15) characterizes the affine properties of the physical space.
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Hence, the variational principle naturally defines a Q-wis space. Variation with
respect to Ω gives

δΩ : λ2R =
∂S

∂t
+

1

2m
∇S.∇S + V . (7.13)

The right-hand side of this equation has dimension of energy while the curva-
ture scalar has dimension of [R] = L−2. Furthermore, apart from the particle’s
energy, the only extra parameter of the system is the particle’s mass m. Thus,
there is only one-way to combine the unknown constant λ2, which has dimen-
sion of [λ2] = E.L2, with the particle’s mass such as to form a physical quantity.
Multiplying them, we find a quantity that has dimension of angular momentum
squared [m.λ2] = ~2.
In terms of the scalar function Ω, the curvature scalar is given by (see ap-

pendix)

R = 8
∇2Ω

Ω
. (7.14)

Hence, setting λ2 = ~2/16m, equation (7.13) becomes

δΩ :
∂S

∂t
+

1

2m
∇S.∇S + V − ~2

2m

∇2Ω

Ω
= 0 , (7.15)

Finally, varying the Hamilton’s principal function S we find

δS :
∂Ω2

∂t
+∇

(
Ω2∇S

m

)
= 0 . (7.16)

Equations (7.15) and (7.16) are identical to equations (7.3) and (D.7) if we
identify Ω = A. Thus, the “action” of a point-like particle non-minimally cou-
pled to geometry is given by

I =

∫
dtd3x

√
gΩ2

[
~2

16m
R−

(
∂S

∂t
−+

1

2m
∇S.∇S + V

)]

exactly reproduce the Schrödinger equation and thus the quantum behaviour.
The straightest way to compare this geometrical approach to the common quan-
tum theories is to relate it to the Bohm-de Broglie interpretation3. Note that
this formulation has the advantage of giving a physical explanation of the ap-
pearance of the quantum potential, eq. (7.5). In a Q-wis, this term is simply
its curvature scalar. The inverse square root of the curvature scalar defines a
typical length Lw (Weyl length) that can be used to evaluate the strength of
quantum effects

Lw ≡
1√Rw

. (7.17)

3Up to date, all interpretation of quantum mechanics are on equal footing. Thus, estab-
lishing the connection with the causal interpretation automatically links this geometrical
interpretation with all others.
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As we have already mentioned, the classical limit of Bohm-de Broglie in-
terpretation is achieved when the quantum potential is negligible compared to
other energy scales of the system. In the scope of this geometrical approach,
the classical behaviour is recovered when the length defined by the Q-wis cur-
vature scalar is small compared to the typical length scale of the system. Once
the Q-wis curvature becomes non-negligible the system goes into a quantum
regime.

7.3.1. Geometrical uncertainty principle

As long as we accept that quantum mechanics is a manifestation of a non-
Euclidean geometry, we are faced with the need of reinterpreting geometrically
all theoretical issues related to quantum effects. As a first step, we associate
the uncertainty principle to a break down of the classical notion of a standard
ruler.
In Euclidian space, there is a clear notion of distance between two points.

Generalizing to curved spaces, it is still possible to define distance as the smallest
length between two given points calculated along geodesics in 3-d space. This is
a consistent definition since the 3-d space has a true metric in the mathematical
sense that its eigenvalues are all positives. However, this definition does not
encompass the classical notion of a standard ruler since standard rulers are based
on euclidian space. This means that if quantum mechanics can be interpreted as
a modification of euclidian space it shall have a limit of validity for the notion
of euclidian distance. In other words, it should not be possible to perform a
classical measurement of distances smaller than a given value that of course
should be related to the curvature scale of the space, i.e. the Q-wis curvature
length. Thus, we propose that any measurement can only measure distances
bigger than the Weyl length

∆L ≥ Lw =
1√Rw

. (7.18)

The quantum regime is extreme when the Q-wis curvature term dominates.
Thus, from equations (7.14) and (7.15) we have

Rw = 2

(
2∆p

~

)2

− 16m

~2
(E − V ) ≤ 2

(
2∆p

~

)2

(7.19)

and finally combining equations (7.18) and (7.19) we obtain

∆L.∆p ≥ ~

2
√
2

. (7.20)

We should emphasize that now the Heisenberg’s uncertainty relation has a
pure geometrical meaning. Our argument closely resembles Bohr’s complemen-
tary principle inasmuch as the impossibility of applying the classical definitions
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of measurements. However, we strongly diverge with respect to the fundamental
origin of the physical limitation.

Bohr’s complementary principle is based on the uncontrolled interference of a
classical apparatus of measurement. On the other hand, we argue that the no-
tion of a classical standard ruler breaks down because its meaning is intrinsically
dependent on the validity of Euclidian geometry. Once it becomes necessary to
include the Q-wis curvature, we are no longer able to perform a classical mea-
surement of distance.

There is another way to interpret the uncertainty principle. First, recall that
in scattering processes one can defines the classical electron radius as re ≡
e2/mc2 since it has dimension of length and it is the classical radius for which
the electrostatic self-energy is equal to the electron mass. Furthermore, the
Thomson cross section is approximately the area defined with this classical
radius, σT ≈ 4πr2e .

Now, we shall construct a similar notion for our quantum system. For a given
particle of mass m and energy E there is only one combination with the free
parameter of the theory λ which has dimension of length, i.e. λ/

√
E. We take

this value as a definition of the classical size of the particle, namely

lpart ≡
λ√
E

=

√
~2

16mE
. (7.21)

One might worry the appearance of a ~ in the definition of a classical quan-
tity. However, as we shall show below, this length also establishes how far the
system is from a quantum regime which naturally should depends on ~. The
appearance of the Planck constant in our definition is completely analogous
to the appearance of the speed of light c for the classical electron radius in
non-relativistic Thomson cross section. The above classical size lpart has the
same meaning to quantum processes as the classical electron radius has for the
Thomson scattering.

Note that this definition coincides with the particle’s Compton wavelength
if one uses the relativistic relation E = m.c2 which is its rest mass potential
energy. For a non-relativistic particle the contribution to its total energy comes
mainly from its rest mass. Thus, even though the particle might have a kinetic
energy, for a non-relativistic particle one is still allowed to use the above equation
and compare it to the particle’s Compton wave-length inasmuch the Compton
wavelength specifies the limits of validity of non-relativistic quantum mechanics.
As soon as the system attains the relativistic regime not only the above equation
is no longer valid but also non-relativistic quantum mechanics. Hence, the above
equation has the same range of validity as non-relativistic quantum mechanics.

In connection with the definition of a classical radius from the Thomson cross
section we shall conceive a free stationary particle. Moreover, the radius lpart
defines a volume which we suppose to be at rest so that its energy is related to
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the curvature through

E =
~2

16m
RW ⇒ lpart =

1√RW

. (7.22)

Notwithstanding this finite size picture, the system describes a point-like par-
ticle. Thus, from equation (7.19) we can relate the volume defined by lpart with
the particle’s momentum through

lpart .∆p ≥
~

2
√
2

. (7.23)

From this point of view, the uncertainty principle indicates that it is impos-
sible to perform a measurement smaller than the classical size of the particle
defined by equation (7.21). In other words, it is impossible to perform a classi-
cal measurement inside what one normally would call a classical particle. This
geometrical uncertainty relation attribute to a point-like particle an effective
size due to the Q-wis curvature of the 3-d space.

7.4. Conclusions

It is well known that as soon as we consider high velocities or high energies one
has to abandon the Euclidean geometry as a good description of the physical
space. These brought two completely different modifications where the physical
space loses its absolute and universal character. In fact, this is the core of
classical relativistic physical theories, namely Special and General Relativity.
In a similar way, one should be allowed to consider that the difficulties that

appears while going from classical to quantum mechanics comes from an inap-
propriate extrapolation of the Euclidean geometry to the micro-world. Hence,
the unquestioned hypothesis of the validity of the 3-d Euclidean geometry to all
length scales might be intrinsically related to quantum effects.
In the present work, we have shown that there is a close connection between

the Bohm-de Broglie interpretation of quantum mechanics and the Q-wis spaces.
In fact, we point out that the Bohmian quantum potential can be identified with
the curvature scalar of the Q-wis. Moreover, we present a variational principle
that reproduces the Bohmian dynamical equations considered up to date as
equivalent to Schrödinger’s quantum mechanics.
The Palatini-like procedure, in which the connection acts as an independent

variable while varying the action, naturally endows the space with the appro-
priate Q-wis structure. Thus, the Q-wis geometry enters into the theory less
arbitrarily than the implicit ad hoc Euclidean hypothesis of quantum mechanics.
The identification of the Q-wis curvature scalar as the ultimate origin of quan-

tum effects leads to a geometrical version of the uncertainty principle. This ge-
ometrical description considers the uncertainty principle as a break down of the
classical notion of standard rulers. Thus, it arises an identification of quantum
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effects to the length variation of the standard rulers.
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7.5. Appendix: Q-wis Geometry

In this section we shall briefly review the mathematical properties of such 3-d Q-
wis space. Contrary to the Riemannian geometry, which is completely specified
by a metric tensor, the Q-wis space defines an affine geometry. This means that
the covariant derivative which is defined in terms of a connection Γmik depends
not only on the metric coefficients but also on the gradient of a scalar function
f, a(x). For instance, given a vector Xa its covariant derivative is

Xa ;b = Xa , b − ΓmabXm . (7.24)

The non-metricity of the Q-wis geometry implies that rulers, which are stan-
dards of length measurement, changes while we transport it by a small displace-
ment dxi. This means that a ruler of length l will change by

δ l = l f, a dx
a . (7.25)

Note that even though it changes form point to point, in a Q-wis the length
does not change along a closed path

∮
dl = 0 . (7.26)

Contrary to a Riemannian space, the covariant derivative of the metric does
not vanishes but it is given by

gab ; k = f, k gab . (7.27)

Using Cartesian coordinates, it follows that the expression for the connection
in terms of f, k takes the form

Γkab = −
1

2

(
δka f, b + δkb f, a − gab f , k

)
. (7.28)

As a matter of convenience, we define f = −4 lnΩ. The Ricci tensor eq.
(7.10) constructed with the above connection equation (.43) is given by

Rij = 2
Ω,ij
Ω
− 6

Ω,iΩ,j
Ω2

+ 2gij

[
∇2Ω

Ω
+
~∇Ω.~∇Ω

Ω2

]
(7.29)
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and its trace the scalar of curvature R ≡ gijRij = 8 ∇2Ω
Ω

. In the present paper
we have used a variational principle, which proof is as follows. Consider the
action

I =

∫
dt d3x

√
g Ω2R (7.30)

then, variation of the connection yields

δI =

∫
dt d3x

√
g Ω2 gab δRab =

∫
dt d3x Zab

m δΓmab (7.31)

with

Zab
m ≡ (

√
g gabΩ2);m −

1

2
(
√
g gak Ω2); k δ

b
m +

−1
2
(
√
g gbk Ω2); k δ

a
m (7.32)

Taking its trace we obtain
(√

g gak Ω2
)
; k

= 0. Substituting this expression in

(8.9) we finally obtain the condition for a Q-wis geometry

gab ; k = − 4
Ω, k
Ω

gab . (7.33)
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8. Geometrizing Relativistic
Quantum Mechanics

F. T. Falciano M. Novello J. M. Salim

Abstract

We propose a new approach to describe quantum mechanics as a manifestation
of non-euclidean geometry. In particular, we construct a new geometrical space
that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that
ultimately will be identified with quantum effects. The geometrical properties
of Qwist allow us to formulate a geometrical version of the uncertainty principle.
This relativistic uncertainty relation unifies the position-momentum and time-
energy uncertainty principles in a unique relation that recover both of them in
the non-relativistic limit.

8.1. Introduction

Non-relativistic theories were formulated to describe natural phenomena as a
collection of events occurring on space using time as their external parameter.
For that it seemed reasonable to formalize the physical arena in an abstract
language as a flat, homogeneous and isotropic space. In fact, there was no
other but one geometrical theory available. Hence, euclidean geometry was
immediately identified with physical space.

Apart from its peculiarities, quantum mechanics promptly inherited euclidean
geometry from classical mechanics. Even though some of its formulations do not
even have a well defined notion of trajectory, quantum mechanics is defined using
the flat euclidean metric or at most the flat minkowskian metric when we are
dealing with relativistic quantum systems.

One of the novelties of relativistic theories is to describe physical phenomena
on a non-euclidean four dimensional manifold. There is a rupture in the iden-
tification of the euclidean geometry with the physical space. In fact, General
Relativity generalize the spacetime structure allowing it to be any possible type
of Riemannian geometry.
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The geometrical properties of a Riemannian space is completely characterized
by a metric tensor. Its connection, the geometrical object that defines the co-
variant derivative, is identified with the Christoffel symbol, which is completely
determined by the metric tensor. These spacetimes have two important prop-
erties, namely, all Riemannian spaces are locally minkowskian and the parallel
transport prescription which enables us to compare objects at different locations
preserve lengths and angles.
Additionally, there is still a wider class of torsion free geometrical space that

was first introduced by Weyl [1] as an attempt to include electromagnetism in
the properties of spacetime. In a Weyl space, the covariant derivative is again
modified to implement a new gauge symmetry. The main idea was to incor-
porate electromagnetism in the geometrical degrees of freedom and geometrize
both gravitation and electromagnetism, the only known classical long-range in-
teractions.
From a different perspective, London proposed [2] that the geometrical space

developed by Weyl could be related to quantum phenomena. London hypothesis
was that stationary states of a quantum system such as an hydrogen atom should
be associated with special geometrical configurations. In particular, he obtained
Bohr’s atomic orbits for the hydrogen atom as the only possible integrable orbits
on that Weyl space. Therefore, it became admissible that euclidean geometry
could fail not only on large scales but also on small scales. The possibility of this
breakdown of euclidean geometry on small scales was considered by Riemann
even before the development of quantum mechanics [3]

“There arises from this problem of searching out the simplest facts
by which the metric relations of space can be determined, a problem
which in nature of things is not quite definite ... These facts are, like
all facts, not necessary but of a merely empirical certainty; they are
hypothesis; one may therefore inquire into their probability, which
is truly very great within the bounds of observation, and thereafter
decide concerning the admissibility of protracting them outside the
limits of observation, not only toward the immeasurably large, but
also toward the immeasurably small.”

From London’s work up to today, there has been very few but also very
interesting analysis relating non-euclidean spaces and quantum mechanics [5]-
[15]. In general, all these attempts to reproduce quantum phenomena are based
on Weyl spaces. After Dirac’s work [4], the properties of a Weyl space have
been considerably changed with respect to Weyl’s original idea. In appendix .1
we describe in some detail what is nowadays called a Weyl space.
Our aim in this work is to propose a similar but different approach to de-

scribe quantum effects. We argue that relativistic quantum mechanics can
also be understood as a manifestation of what we shall call a Qwist (quantum
weyl integrable spacetime). In particular, we construct a geometrical version of
Heisenberg’s uncertainty principle, which is related to the variation of a vector’s
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length in Qwist. This length variability also happens in Weyl spaces but with
a completely different physical meaning as shall be clear in what follows.
In the next section we shall describe the formal basis of our approach. In ad-

vance, it seems convenient to stress that to define a physical theory one has first
of all to define its kinematic properties. Given an action principle together with
a set of dynamical fields does not completely specify the theory. In particular,
each theory has its own internal symmetries, which can be used to construct an
equivalent class of observers [16]. The point we would like to stress is that one
has to define from the beginning which are the allowed transformations of the
dynamical fields.
In particular, one should not be misled by similarities of some of the equations

and confuse Qwist with any other geometrical space. Let us now define the
structure of the Qwist space that we shall identify with the physical spacetime.

8.1.1. Qwist geometry

A Qwist is a geometrical manifold
(
gµν ; Γ

α
µν

)
endowed with a metric tensor and

a symmetric affine connection Γαµν = Γα(µν). Its symmetry group is the Manifold
Mapping Group MMG, which allow us to perform an arbitrary coordinate
transformation1.The connection of this space is defined with an extra degree of
freedom given by a scalar field Ω(x). Thus, Qwist is neither a Riemannian space
nor a Weyl geometry (see appendix .1 for more details).
We shall construct our connection such that the non-metricity condition be

given by
∇αgµν ≡ −2 (lnΩ),α gµν . (8.1)

One can use the above equation to solve for the connection giving

Γαµν = { αµν}+
1

Ω

(
Ω,ν δ

α
µ + Ω,µ δ

α
ν − Ω,αgµν

)
. (8.2)

Since the connection is not equal to the Christoffel symbol, it is adequate
to distinguish between two kind of covariant derivative. The Qwist covariant
derivative is constructed with the connection and we shall denote by

∇αξ
µ ≡ ξµ;α = ξµ,α + Γµαλξ

λ ,

and a Riemannian covariant derivative

ξµ//α = ξµ,α + { µαλ} ξλ .

The non-metricity condition (8.1) implies that the length of a vector is not
preserved if parallel transported

δl = −lΩ−1Ω,µdx
µ . (8.3)

1Note that the symmetry group of a Qwist space does not include conformal transformations,
which are characteristic to Weyl spaces.
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The above equation has an important physical meaning. It describes how the
physical length of a ruler changes from point to point. Note that as long as the
extra degree of freedom is a scalar field Ω′(x′) = Ω(x) there is no gauge freedom
in (8.3).
Furthermore, condition (8.1) does not suffers from any kind of second clock

effect [17, 18] that could be present if instead of the gradient of a scalar function
it were a vector field. Considering (8.3), it is immediate to show that the length
of a vector does not change along a closed path

∮
δl = 0 . (8.4)

Thus, this property guarantees that all local measurements such as distances
are well defined and can be uniquely determined.
As usual, the curvature tensor can be written in terms of the connection as

Rα
µβν = Γαµβ,ν − Γαµν,β + ΓεµβΓ

α
νε − ΓεµνΓ

α
εβ ,

which can be used to calculate its traces.
Hence, the Ricci tensor is given by

Rµν = R̂µν −
2∇ν(Ω,µ)

Ω
+

4Ω,µΩ,ν
Ω2

− gµν
[
�Ω

Ω
+

Ω,λΩ
,λ

Ω2

]
(8.5)

where � ≡ ∇µ∇µ is the d’Alembertian operator and R̂µν is the Riemannian part
of the Ricci tensor, i.e. the Ricci tensor constructed solely with the Christoffel
symbol. For the curvature scalar R ≡ gµνRµν we find

R = R̂ − 6� ln Ω− 6 (lnΩ),α (lnΩ)
,α = R̂ − 6

�Ω

Ω
(8.6)

where again R̂ ≡ gµν R̂µν is its corresponding Riemannian part.
It is interesting to show that it is possible to derive the geometrical properties

of a Qwist space from a palatini-like variational principle by considering the
connection as an independent field. For this purpose, consider the functional

I =

∫
d4x
√−g Ω2R . (8.7)

If we demand this functional to be stationary with respect to variation of the
connection we find

δI =

∫
d4x
√−g Ω2 gµνδRµν =

∫
d4x Zµν

λ δΓλµν = 0 (8.8)

where Zµν
λ is given by

Zµν
λ ≡ (

√−g gµνΩ2); λ −
1

2
(
√−g gµαΩ2);α δ

ν
λ −

1

2
(
√−g gναΩ2);α δ

µ
λ = 0(8.9)
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Taking the trace of the above expression yields

(√−g gµαΩ2
)
;α

= 0 . (8.10)

Substituting (8.10) again in (8.9) we finally obtain the condition that charac-
terize a Qwist geometry

gµν ;α = −2 Ω, α
Ω

gµν . (8.11)

In the following sections we will study the dynamics of a spinless charged
particle in a Qwist geometry and relate it to a relativistic quantum system. In
particular, we will show that this system yields the correct non-relativistic limit,
i.e. the Schrödinger equation for a charged particle.
We shall describe quantum mechanics using the Bohm-de Broglie causal inter-

pretation, which are amongst the well-defined formulations that reproduce the
same results of the orthodox interpretation but has the advantage of describing
matter as point-like particles.
In addition, we propose a geometrical interpretation of Heisenberg’s uncer-

tainty principle. This relativistic geometrical version combines both the position-
momentum and time-energy relations in an unique principle, which decouples
into the usual Heisenberg’s uncertainty principles in the non-relativistic limit.
Finally, we discuss how our results are related to Klein-Gordon’s equation

from a geometrical point of view and conclude in the last section with some
final remarks.

8.2. Relativistic Quantum Mechanics

In this section, we will describe a system composed of a relativistic charged
point-like particle interacting with an external electromagnetic field and ge-
ometry. Therefore, we are considering a charged particle wandering in a non-
euclidean spacetime that has an independent degree of freedom.
This is perhaps the simplest relativistic system but it will be interesting

enough to present the connection between Qwist and quantum mechanics. We
decided to include an external electromagnetic field (non-dynamical) insofar as
it does not veil the main properties of Qwist. Notwithstanding, if preferable, it
is possible to do the same analysis turning the electromagnetic field off, which
is equivalent to consider a neutral particle without expense of the quantum
physical content.
Our discussion will be based on a variational principle that at the same time

provides the dynamical equation for the particle and naturally endows the space-
time with an affine structure that is typical of a Qwist space. As will be clear
in what follows, the particle’s dynamics is given by integrating a relativistic
Hamilton-Jacobi equation where its momentum is described by the derivative
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of Hamilton’s principle function Pµ = ∂µS. In addition, apart from a kind of
non-minimal coupling, the geometrical sector shall be given by the Ricci scalar.
Thus, consider the following action that should be justified a posteriori

I =
1

κ

∫
d4x
√−gΩ2 (Lg + Lm) , (8.12)

with

Lg ≡ λ2R (8.13)

Lm ≡
gµν

~2

(
∂µS −

e

c
Aµ

)(
∂νS −

e

c
Aν

)
− µ2 . (8.14)

In the above expressions g is the determinant of the metric gµν and R is
the Ricci scalar . As already mentioned, S is the relativistic version of the
Hamilton’s principle function of the particle which here is coupled to the gauge

field Aµ =
(
ϕ, ~A

)
describing an external electromagnetic field.

The constants appearing above are the speed of light c, the gravitational
constant κ ≡ 16πG/c3, a dimensionless λ to be determined, the particle’s electric
charge e and its inverse Compton wavelength µ ≡ mc/~.
We should strongly stress that there is no gravitational interaction in this sys-

tem. The gravitational constant κ appears as a global factor and it is introduce
only to adjust the dimensionality of the action [I] = ~. Actually, one should not
be surprised by the introduction of κ inasmuch this is the only way to change
the dimensionality of the curvature scalar to dimension of action.
This system has three dynamical variables to be varied, namely, the dimen-

sionless scalar function Ω, the connection Γλµν and S. Variation with respect
to the connection give us the geometrical structure of spacetime. Following the
derivation of section 8.1.1, equations(8.7)-(8.11), we have

δI =

∫
d4x Zµν

λ δΓλµν = 0 ⇒ gµν;λ = −2 (lnΩ),λ gµν . (8.15)

Varying the Hamilton’s function S give us a conservation-like equation,

δI = − 2

κ~2

∫
d4x
√−gΩ2∂µ (δS)

(
∂µS −

e

c
Aµ

)
= 0

=
2

κ~2

∫
d4x
√−g gµν

[
Ω2
(
∂µS −

e

c
Aµ

)]
//ν

δS = 0

⇒ gµν
[
Ω2
(
∂µS −

e

c
Aµ

)]
//ν

= 0 , (8.16)

where we have dropped a surface term using the four-dimensional Gauss theo-
rem. Note that we have written this expression using a Riemannian covariant
derivative, i.e. defined using the Christoffel symbol only.
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Finally, variation with respect to Ω gives
(
∂µS −

e

c
Aµ

)(
∂µS − e

c
Aµ
)
−m2c2 + λ2~2R = 0 . (8.17)

Since we are supposing that the Riemannian part of the Qwist geometry
is Minkowskian, gµν = diag (1,−1,−1,−1), by choosing λ2 = 1/6, the above
equation becomes

(
∂µS −

e

c
Aµ

)(
∂µS − e

c
Aµ
)
−m2c2 − ~2�Ω

Ω
= 0 . (8.18)

Equation (8.18) generalize the relativistic Hamilton-Jacobi equation with the
inclusion of the last term. This extra term which is basically the Weyl curvature
scalar respond for all relativistic quantum effects of this system.
The Weyl curvature scalar plays the same role in this relativistic scenario

as the bohmian quantum potential for the non-relativistic quantum mechanics
[19]-[22]. In particular, the classical regime is attained in the limit �Ω→ 0.
Given a field configuration for the gauge field Aµ, (8.16) and (8.18) define a

closed system that is well defined with the specification of appropriate initial
conditions. Notwithstanding, since quantum effects are now given by modifica-
tions of the spacetime structure, it shall be convenient to use a hydrodynamical
description and associate the particle’s world-line with a time-like congruence.
Following [23]-[26] we shall define our canonical momentum one-form P̃ =

Pµ θ̃
µ and de Broglie’s mass respectively as

Pµ ≡ ∂µS −
e

c
Aµ , (8.19)

M ≡
√
m2 +

~2

6c2
R = m

√
1 +

~2

m2c2
�Ω

Ω
. (8.20)

By virtue of (8.18)-(8.20) we can define a unitary time-like velocity field by

Uµ = c
dxµ

dλ
≡ 1

M
gµνPν =⇒ UµUµ = c2 i.e. dλ2 = gµνdx

µdxν . (8.21)

However, the “euclidean’ particle velocity field is define as

V µ = c
dxµ

ds
≡ 1

m
gµνPν =⇒ V µVµ =

M2

m2
c2 . (8.22)

Thus, there is an intrinsic time re-parameterization along the particle’s tra-
jectory given by

ds =
dλ√

1 + ~2

m2c2
�Ω
Ω

=
m

M
dλ . (8.23)

In addition, within this geometrical interpretation, (8.16) can be viewed as a
integrability condition. One can immediately show that for any vector ξµ we
have

ξµ;µ =
1

Ω4

(
Ω4ξµ

)
//µ

or ξµ;ν g
µν =

1

Ω2

(
Ω2ξµ

)
//µ

,
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which connects the covariant derivative of Qwist and Riemann geometries.
Hence, the continuity-like equation (8.16) can be written as

1

Ω2

(
Ω2P α

)
//α

= Pα ; β g
αβ = 0 , (8.24)

which can be viewed as an integrability condition on Qwist for the canonical
momentum Pµ.
Note that the original system equations (8.16) and (8.18) are equivalent to

(8.21) and (8.24). Notwithstanding the mathematical equivalence, one should
bear in mind that its physical interpretation is completely different. The Dy-
namical equations for the two scalar functions, namely S and Ω is now substi-
tuted by kinematic relations for the time-like congruence Uµ.
As a matter of fact, specifying our Cauchy-surface Σc as a space-like hyper-

surface where P µ is time-like and orthogonal everywhere, one can show [26]-[28]
that the integrability condition given by (8.24) guarantees that P µ will always
remains time-like. This can be proved as follows.
Consider the variation along the congruence Uµ of the quantity Ω2MδV ,

where δV is an infinitesimal 3-volume orthogonal to the congruence. It’s straight-
forward to show that

d

dλ

(
Ω−2MδV

)
= Uα∂α

(
Ω−2M

)
δV + Ω−2MUα∂α (δV )

= Uα∂α
(
Ω−2M

)
δV + Ω−2MδV Uα

;α

=
(
Ω−2MUα

)
;α
δV =

(
Ω−2P α

)
;α
δV

= Pα ;β g
αβ Ω−2δV = 0 . (8.25)

Hence, as long as δV and Ω−2 are always positive and (8.25) shows that
Ω−2MδV = Cte then M2 should not change sign. Given that P µ is time-like
on the Cauchy-surface, i.e. P µPµ(Σc) = M2(Σc) > 0 then it also has to be
time-like everywhere PµP

µ(x) > 0.
Our system is suitable to describe relativistic spinless charged particles. There-

fore, one might be concerned how to deal with creation-annihilation processes
and if it is possible to consistently define a time-like congruence like P µ in the
presence of both particles and anti-particles.
We should emphasize that this analyses deals only with non-interacting par-

ticle which in a sense avoid these kind of difficulties. However, this formalism
is as good to describe particles as it is to describe anti-particles due to its in-
variance under time reversal accompanied by a change of sign of the electrical
charge e. A time reversal is equivalent to a change of sign of the Hamilton’s
function S → −S. Hence it’s straightforward to show that the system of equa-
tions (8.16) and (8.18), remains unchanged if e→ −e. We shall come back later
to this issues in section 8.2.3.
Finally, consider the particle’s trajectory, which is given by integrating (8.21).

One should already expect that the particle should not follow a geodetic trajec-
tory as long as it has a quantum force acting on it. Given the particle’s velocity
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field we can calculate this quantum force using the kinematic equations. As a
matter of convenience, we shall for the moment consider a cartesian coordinates
so that

dUµ

dλ
=
c2

M
∂µM − Uα∂αM

M
Uµ +

e

M
F µ

αU
α ,

where we have define the components of the electromagnetic tensor as Fµν ≡
∂µAν−∂νAµ. We can readily recognize the last term as being the Lorentz’s force
while the two first ones are intrinsically geometrical terms that we commonly
associate with quantum effects.
The geodesic equation written in its covariant form gives

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= W µ +

e

Mc2
F µ

αU
α , (8.26)

with

W µ ≡ ∂µ ln

(
M

Ω

)
− 1

c2
Uα∂α ln

(
M

Ω2

)
Uµ . (8.27)

Note that the quantum force W µ also depends on the velocity field W µ =
W µ

(
Ω , Uλ

)
.

8.2.1. Non-relativistic limit

The above system describes a charged relativistic point-like particle interacting
with an external electromagnetic field in a Q-wist geometry. This system can be
understood as a relativistic generalization of the Schrödinger picture of quantum
mechanics. As we shall now show, it is possible to recover the Schrödinger
description by redefining the Hamilton’s principal function and taking the usual
non-relativistic limit c→∞.

One of the main difference in the description of a relativistic particle is that its
energy contains its inertial rest mass as a potential-like energy. Furthermore,
inasmuch the energy is related to the Hamilton’s function by E = −∂S

∂t
, we

define the non-relativistic version of the Hamilton’s function by Snr ≡ S+mc2t
.

Substituting this ansatz in (8.18) we find

∂Snr
∂t

(
1− eA0

mc2

)
+

1

2m

(
~∇Snr −

e

c
~A
)2

+ eA0 −
e2A0A

0

2mc2
− ~2

2m

∇2Ω

Ω
− 1

2mc2

[(
∂Snr
∂t

)2

− ~2

Ω

By considering the limit c → ∞ it is licit to neglect eA0

mc2
with respect to 1

and e2A0A0

2mc2
to eA0. Furthermore, the last two terms go away and we identify

the spatial part of the Weyl curvature as the non-relativistic bohmian quantum
potential Q = − ~2

2m
∇2Ω
Ω

[19]-[22].
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Thus, in this limit we have

∂Snr
∂t

+
1

2m

(
~∇Snr −

e

c
~A
)2

+ eA0 +Q = 0 , (8.28)

which reproduce the first non-relativistic bohmian equation, namely the Hamilton-
Jacobi like equation.
The second non-relativistic equation is derived directly from (8.16),

1

c2
∂

∂t

[
Ω2

(
∂Snr
∂t
−mc2 − eA0

)]
− ~∇.

[
Ω2(~∇Snr −

e

c
~A)
]
= 0

and again neglecting eA0

mc2
with respect to 1 and the terms containing 1/c2

∂Ω2

∂t
+ ~∇.

[
Ω2

(
~∇Snr
m
− e ~A

mc

)]
= 0 . (8.29)

As it’s well known, (8.28) and (8.29) are equivalent to the Schrödinger equa-
tion 2. Hence it is in fact legitimate to view (8.16) and (8.18) as relativistic
generalizations of the Schröndinger picture of quantum mechanics for a spinless
charged point-like particle.
Note that in this limit the geometrical description degenerates to

M −→ m , Uµ −→ V µ , dλ −→ ds

The de Broglie’s Mass M goes to the particle’s rest mass m while both veloc-
ity fields coincide as well as its parameterization. In non-relativistic quantum
mechanics one can understand the quantum force as a deviation from an eu-
clidean geodesic [32]. If we chose a coordinate system which has a vanishing
Christoffel symbol, one can show that

d2xµ

dt2
= hµν

∂

∂xν
Q+

e

m
F µ

νV
ν ,

where we have defined the projector tensor hµν along the velocity field V µ by
hµν ≡ gµν − V µV ν . Taking the non-relativistic limit (see [29]-[31] for more
details), the spatial part becomes

m
d2~x

dt2
= −~∇Q + e

(
~E + ~v × ~B

)
,

where ~v is the particle’s 3-velocity. As expected, the particle feels the usual
electromagnetic force plus the non-relativistic quantum force given by −~∇Q.

2The above mentioned pair of equations are precisely the Bohm-de Broglie system of equa-
tions that one finds when uses the polar form of the wave-function ψ = Ωexp

{
i
~
Sc

}
in

Schrödinger’s equation.

1950



8.2.2. Relativistic uncertainty principle

The uncertainty principle is in the core of the orthodox interpretation of quan-
tum mechanics. In a recent paper [32], we have shown that it is possible to
interpret geometrically the uncertainty relation for the position and momentum
by virtue of a characteristic length scale defined by a 3-d curvature scalar.
However, as long as we have considered a non-relativistic theory, we have

established a purely spatial relation which in the relativistic context is unsatis-
factory by the requirement of covariance.
In this section, we shall generalize this “spatial” uncertainty principle to a

four dimensional relation. In a relativistic theory only four dimensional quantity
acquires physical meaning. Accordingly, the interdependence between space and
time compel us to somehow relate the uncertainty principle to the interval ds2 =
c2dτ 2 − dl2. In addition, taking the non-relativistic limit from this relation we
shall show that we recover both uncertainty relation for position and momentum
as well as for time and energy.
As we have shown (8.6), the Qwist curvature scalar can be decomposed in a

Riemannian part plus the contribution of the extra degree of freedom Ω. If we
suppose that the Riemannian part is flat, R̂ = 0, then

R = − 6

c2Ω

∂2Ω

∂t2
+ 6
∇2Ω

Ω
.

Apart from the speed of light c, the above equation shows that Qwist curva-
ture scalar which has dimension of inverse length squared is a sum of two terms
one with dimension of inverse time squared and the other with dimension of
inverse length squared. Thus, we define the Weyl length and Weyl time by

Lw ≡
∣∣∣∣
∣∣∣∣6
∇2Ω

Ω

∣∣∣∣
∣∣∣∣
−1/2

; Tw ≡
∣∣∣∣
∣∣∣∣
6

Ω

∂2Ω

∂t2

∣∣∣∣
∣∣∣∣
−1/2

. (8.30)

In a previous paper [32], we have shown that non-relativistic quantum me-
chanics can be pictured also as a modification of the 3d euclidean space which
we called Qwis. Through this analysis we were able to construct an uncertainty
principle for space and momentum based on the characteristic length above
defined Lw.
If in fact the Qwist curvature scalar R is related to quantum phenomena then

the above quantities (8.30) have to somehow yield a measurement of departure
from a classical behavior. Recall equation (8.23)

ds =
dλ√

1 + ~2

m2c2
�Ω
Ω

.

In the non-relativistic limit, i.e. c → ∞, we have dλ → c.dτ . Furthermore,
the time derivative of Ω can be neglected compared to its spatial derivative.
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Thus, we have

ds

dλ
=

√
1− dl2

dλ2
=

√
1− v2

c2
≈ 1− v2

2c2
= 1− p2

2m2c2

=
1√

1 + ~2

m2c2
�Ω
Ω

≈ 1 +
~2

2m2c2
∇2Ω

Ω

Comparing the above equations we find

p2. L2
w =

~2

6

To interpret the above equation as an uncertainty-like relation we need an ex-
tra assumption. Suppose that any length measurement ∆L can only measure
distances bigger than the characteristic Weyl length, i.e.

∆L ≥ Lw =

∣∣∣∣
∣∣∣∣6
∇2Ω

Ω

∣∣∣∣
∣∣∣∣
−1/2

. (8.31)

The reasonability of this hypothesis lies on the notion of a classical measure-
ment. A length measurement is made with a standard ruler which is supposed
to be a stiff object. Thus, the notion of classical standard ruler presuppose the
validity of euclidean space (see [32] for a more detailed discussion). With the
hypothesis (E.93), the above relation becomes

∆p2.∆L2 ≥ ∆p2. L2
w ⇒ ∆p.∆L ≥ ~√

6
. (8.32)

In addition, it is also possible to derive the uncertainty relation for time
and energy. For the moment we shall turn off the electromagnetic interaction
(Aµ = 0). Without the electromagnetic potential, equation (8.18) can be recast
as

E2 = m2c4 + p2c2 +
~2

Ω

∂2Ω

∂t2
− ~2c2

∇2Ω

Ω
⇒

⇒ E = mc2

√
1 +

1

c2

(
p2

m2
− ~2∇2Ω

m2Ω

)
+

1

c4
~2

m2Ω

∂2Ω

∂t2

In section 8.2.1, we have argued that the non-relativistic hamilton’s principle
function should be related to the relativistic one by Snr = S +mc2t which can
be interpreted as Enr = E − mc2. Therefore, expanding in power of c−2, the
above equation becomes

Enr =
p2

2m
− ~2∇2Ω

2mΩ
+

~2

2mc2Ω

∂2Ω

∂t2
− 1

8m3c2
(
p2 − ~2Ω−1∇2

)
+O(1/c4) .(8.33)
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In zeroth order,

Enr =
p2

2m
− ~2∇2Ω

2mΩ
.

Note that the non-relativistic energy includes a classical term p2/2m plus a
geometrical term −~2∇2Ω

2mΩ
. Using this result in the second order term we find

0 =
~2

2mc2Ω

∂2Ω

∂t2
− E2

cl

2mc2

which gives

E2
cl . T

2
w =

~2

6
(8.34)

A time measurement is by definition the length of a 4-d trajectory in a fix
spatial point. However, in Qwist appears an intrinsic time re-parameterization
(8.23) which is certainly not include in the euclidean definition of a standard
clock. Generalizing the hypothesis that a length measurement has to be greater
than the weyl length Lw, we shall suppose that a time measurement realized
by a standard clock has to be greater than the weyl time Tw, i.e. ∆t ≥ Tw.
Through this hypothesis, the above relation becomes

∆Ecl.∆t ≥ ∆Ecl.Tw ⇒ ∆Ecl.∆t ≥
~√
6

. (8.35)

Note that the uncertainty relation for position and momentum (8.32) is natu-
rally incorporated into the uncertainty relation for time and energy. Actually, it
is the entanglement between space and time that allows us to derive the above
relation (8.35).
In orthodox quantum mechanics, the impossibility of deriving the uncertainty

relation for time and energy is commonly associated with the role played by time
as an external parameter, i.e. a lack of a time operator. Our geometrical ap-
proach does not deal with operators and in fact treats space and time variables
on equal footing in the relativistic sense.

8.2.3. Geometrical interpretation of Klein-Gordon’s equation

The geometrical approach developed above describes a relativistic particle in-
teracting with a non-euclidean geometry. The deviation from a pure classical
behavior comes from the non-vanishing of the Ricci scalar R. Once �Ω → 0,
the classical regime is recovered. Hence, the extra degree of freedom of the
Qwist spacetime, namely the scalar function Ω is responsible for the departure
from classical behavior.
Interesting enough, our geometrical variational method is formally equivalent

to a Klein-Gordon system. Suppose that instead of treating separately the par-
ticle’s and the geometrical degrees of freedom, we have defined a wave-function
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by combining both ψ = φ. exp
{
i
~
S
}
. The φ field has dimension of inverse

length as commonly is done in field theory and is related to our dimensionless
geometrical degree of freedom by Ω =

√
κ~φ.

With respect to this hybrid object ψ, as should have been expected, (8.16)
and (8.18) can be combined into one equation, a massive Klein-Gordon equation

DµD
µψ −m2c2ψ = 0 ,

where we have defined the gauge covariant derivative operator Dµ ≡ i~∂µ+eAµ.
As it is well known, the above equation can be derived using a variational
principle with Lagrangian density

L = −~−1
(
D̄µψ

∗Dµψ −m2c2ψ∗ψ
)

, (8.36)

where ψ and ψ∗ should be treated as independent dynamical variables. Modulus
a total derivative, (8.36) defines an action

Iψ =
1

κ

∫
d4x
√−g Ω2

[
�Ω

Ω
− gµν

~2

(
∂µS −

e

c
Aµ

)(
∂νS −

e

c
Aν

)
+
m2c2

~2

]
.

(8.37)
Note that the above action is precisely (H.1), i.e. I = Iψ, if we impose

beforehand a Weyl affine structure for the spacetime and identify the scalar
curvature with the first term involving derivatives of Ω. Thus, in a sense, our
approach is more general as long as the affine structure is derived as a palatini-
like variational principle.
This Lagrangian density naturally defines a conserved current

Jµ ≡ − 1

2κ~
ψ∗←→D µψ = Ω2 (∂µS − eAµ) = Ω2gµνPν , (8.38)

and a energy-momentum tensor

Tµν ≡
2c

~
D̄µψ

∗D̄νψ −
c

~

(
D̄λψ

∗D̄λψ +m2ψ∗ψ
)
gµν . (8.39)

The Klein-Gordon equation can be casted in a Schrödinger-like form by defin-
ing a two-component wave-function (see [26, 33] for more detail). In this ap-
proach, it is possible to identify positive and negative energy solutions. The
energy is defined as the eigenvalue of the Hamiltonian of this Schrödinger pic-
ture and it is numerically equal to the spatial integral of the 00−component of
the energy-momentum tensor, i.e. E =

∫
d3xT00.

It can be shown that the negative energy solution can be mapped into the
positive energy solution by a charge conjugation operation. Therefore, as it
is well known, we can associate the negative energy solutions to anti-particle
states. This charge conjugation is intrinsically related to the invariance of the
system by a change of ψ → ψ∗. Hence, charge conjugation can be imitated by
a change S → −S and e→ −e.
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Notwithstanding, as previously emphasized, our analysis deals only with non-
interacting particle. Thus, even thought this formalism is as adequate to par-
ticles as to anti-particles, we have not yet established how interacting process
like creation-annihilation should be described.

8.3. Conclusions

It had been shown in the literature that exist a very interesting connection
between non-euclidean geometries and quantum phenomena. The predominant
mechanism to describe quantum effects by geometrical degrees of freedom has
been based on Weyl space. In the present work, we proposed a new geometrical
approach based on a new geometrical space that we called Qwist.

In Qwist, its extra scalar degree of freedom produce a length variability, which
is responsible for change in size of extended object. Furthermore, this is a
physical and in principle measurable effect. The physical interpretation of this
length variability allowed us to formulate a relativistic and geometrical version
of the uncertainty principle.

The non-euclidean properties of Qwist provide two characteristics dimensions,
namely a Weyl length and a Weyl time defined by

Lw ≡
∣∣∣∣
∣∣∣∣
∇2Ω

Ω

∣∣∣∣
∣∣∣∣
−1/2

; Tw ≡
∣∣∣∣
∣∣∣∣
1

Ω

∂2Ω

∂t2

∣∣∣∣
∣∣∣∣
−1/2

.

These quantities quantify the departure from an euclidean geometry, which
can be used to restrict the validity of a classical measurement. Therefore, there
should have some restriction on determining the properties of the system if there
is a significant departure from euclidean geometry, i.e. there is a significant
manifestation of non-euclideanity in Qwist.

To support the idea that action (H.1) correctly describes the dynamics of
a relativistic charged “quantum” particle, we have studied its non-relativistic
limit and shown that it recovers the usual Schrödinger quantum dynamics. In
addition, we reformulated our dynamical variables to connect this relativistic
system with the Klein-Gordon equation. In particular, it was necessary to define
a new complex field that from our point of view mix geometrical degrees of
freedom with the particle’s hamilton principle function.

The present formalism is adequate to describe particles as well as anti-particles.
However, it not yet clear how interactions between particles and anti-particles
shall be included in this scenario. In addition, it is still an open issue the mean-
ing of a many-particles system and its physical interpretation in view of the
Qwist geometrical interpretation.
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.1. - Weyl geometry

The Weyl space is construct so as to incorporate the gauge transformation
of a vector field (wµ → wµ + Λ,µ ) analogous to the electromagnetic gauge
transformation [359]-[38]. This new vector field is associated with the non-zero
covariant derivative of the metric tensor. The gauge transformation of the Weyl
space is a combine transformation of the metric and of the weyl vector field. In
a weyl gauge transformation we have

gαβ −→ g′αβ = e2Λ(x)gαβ (.40)

wµ −→ w′
µ = wµ + Λ,µ (.41)

while the connection is constructed so that the covariant derivative of the metric
is zero Dg = 0 (see ref.’s[359, 35]), or in components

Dµgαβ = ∂µgαβ − gρβΓρµα − gαρΓρµβ − 2wµgαβ = 0 . (.42)

This equation can be solved to give

Γαµν = { αµν} −
(
δαµ wν + δαν wµ − gµν wα

)
, (.43)

where { αµν} is the Christoffel symbol. Note that the covariant derivative defined
in (.42) is the usual covariant derivative constructed with the connection plus
an extra term related to the weyl vector field (wµ). To distinguish it from the
conventional covariant derivative, one call it co-covariant derivative and defined
it as follows. If a tensor is transformed under a weyl gauge transformation into
Aµ → A′

µ = enΛAµ then it is called a tensor of power n and its co-covariant
derivative is given by

Dµξα ≡ ∇µξα − nξαΛµ , (.44)

where the ~∇ defines the covariant derivative constructed with the connection
∇νξµ ≡ ξµ,ν − Γανµ ξα . Hence, we have defined the metric gµν as a tensor of
power 2 in the weyl sense.

From (.42) one can easily show that

∇µgαβ = 2wµgαβ . (.45)
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Thus, it is also straightforward to show that the length of a vector l ≡√
gµνlµlν parallel transported will change from point to point such that in an

infinitesimal displacement is given by

δl = lwµdx
µ . (.46)

Note that the length of a vector is not gauge invariant. As a matter of fact,
under a weyl gauge transformation we have l → l′ = eΛ(x)l. Thus, by an
adequate gauge choice one can always make δl = 0 in a point. It suffice to
choose Λ = −

∫
wµdx

µ, then

δl′ = δΛ l′ + eΛδl = l′ (Λ,µ + wµ) dx
µ = 0.

However, its variation along a closed curve will not be zero since in general
the curvature Kµν ≡ wµ,ν − wν,µ 6= 0. There is a special case of Weyl space
when the Weyl vector wµ is the gradient of a function, i.e. wµ = ∂µf . In this
case, the length of a vector will not change along a closed curve. Furthermore,
one can choose Λ = −f so that w′

µ = f,µ + Λ,µ = 0, which could motivate us
to associate this subclass of Weyl spaces with conformal transformations of the
metric tensor.
However, even in this special case when the weyl vector is the gradient of a

function, the Weyl space is not equivalent to a conformal transformation of the
associated Riemannian space.
A conformal transformation of the metric tensor takes for example gµν →

g̃µν = e2Λgµν . This transformation maps a Riemannian spaceM characterized

by (gµν ,
{
α
µν

}
) into another Riemannian space M̃ with (g̃µν ,

{̃
α
µν

}
). Thus, we

have

{̃
α
µν

}
≡ 1

2
g̃αξ (g̃ξν,µ + g̃µξ,ν − g̃µν,ξ) =

{
α
µν

}
+
(
δαν Λ ,µ + δαµ Λ ,ν − gµν Λ ,α

)

which can be inverted

{
α
µν

}
=
{̃
α
µν

}
−
(
δαν Λ ,µ + δαµ Λ ,ν − gµν Λ ,α

)
(.47)

becoming very similar to (.43).

However, the new Riemannian manifold M̃ still satisfies the metricity con-
dition, namely, ∇̃αg̃µν = 0. The covariant derivative of the transformed metric
tensor is still zero. The conformal transformation does not change the metricity
condition. Note that if we blindly calculate ∇αg̃µν we find

∇α (g̃µν) = ∇α

(
e2Λg̃µν

)
= 2Λ,αgµν (.48)

which is also very similar to (.45). However, contrary to (.45), (.48) has no
physical meaning. It is the covariant derivative in M applied to the metric
tensor of M̃.
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A. Higgs mechanism without
Higgs boson: M. Novello -U.
Moschella

A.1. abstract

We analyze the properties of the self-interaction of a spinor field Ψ driven by
Heisenberg dynamics. The system has global γ5−invariance. It is possible
to generalize this symmetry for a local space-time dependence by a minimal
coupling of the axial vector constructed with the spinor field to a massless gauge
vector fieldWµ. As a consequence of this coupling the gauge field acquires a mass
when Ψ is in its fundamental state. We can interpret this situation in terms of
Higgs mechanism once the mass of the gauge field appears due to the non-linear
Heisenberg dynamics that allows an apparent bosonisation which becomes the
real vehicle for the generation of the effective mass.

A.2. Heisenberg spinor field

We will call Heisenberg spinor (or H-field for short) a spinor field that satisfies
the non linear equation [1]

iγµ∂µΨ− 2s (A+ iBγ5) Ψ = 0 (A.1)

in which the constant s has the dimension of (lenght)2 and the quantities A and
B are given in terms of the Heisenberg spinor Ψ as:

A ≡ ΨΨ (A.2)

and

B ≡ iΨγ5Ψ (A.3)

We use the convention as in [17] and the standard definitions which just for
completeness we quote:

Ψ̄ ≡ Ψ+γ0.
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The γ5 is hermitian and the others obeys the relation

γ+µ = γ0γµγ
0.

This dynamics is obtained from the Lagrangian

L = LD −V =
i

2
Ψ γµ ∂µΨ−

i

2
∂µΨ γµ Ψ−V (A.4)

The self-interacting term comes from a potential that can be described in terms
either of a current-current or as a quartic of spinors:

V = sJµ J
µ (A.5)

or, equivalently
V = s(A2 +B2) (A.6)

The proof of this equivalence as well as the basis of most of the properties needed
to analyse non-linear spinors comes from the Pauli-Kofink (PK) identities that
establishes a set of tensor relations concerning elements of the four-dimensional
Clifford γ-algebra. For any element Q of this algebra the PK relation states the
validity of

(Ψ̄QγλΨ)γλΨ = (Ψ̄QΨ)Ψ− (Ψ̄Qγ5Ψ)γ5Ψ. (A.7)

for Q equal to I, γµ, γ5 and γµγ5. As a consequence of this relation we obtain
two extremely important consequences:

• The norm of the currents Jµ ≡ Ψ γµΨ and Iµ ≡ Ψ γµ γ5Ψ have the same
strenght but opposite sign.

• The vectors Jµ and Iµ are orthogonal.

Indeed, using the PK relation we have

(Ψ̄γλΨ)γλΨ = (Ψ̄Ψ)Ψ− (Ψ̄γ5Ψ)γ5Ψ.

Multiplying by Ψ̄ and using the definitions above it follows

JµJµ = A2 +B2. (A.8)

We also have
(Ψ̄γ5γλΨ)γλΨ = (Ψ̄γ5Ψ)Ψ− (Ψ̄Ψ)γ5Ψ.

From which it follows that the norm of Iµ is

IµIµ = −A2 − B2 (A.9)

and that the four-vector currents are orthogonal

IµJ
µ = 0. (A.10)

From these results it follows that the current Jµ is a time-like vector; and the
axial current is space-like. Thus, Heisenberg potential V is nothing but the
norm of the four-vector current Jµ.
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A.2.1. Symmetry

Let us consider the γ5−map

Ψ̃ = (cosα + i sinα γ5) Ψ (A.11)

It yields for the scalars A and B the corresponding changes:

Ã = cos 2αA + sin2αB

B̃ = − sin 2αA+ cos2αB (A.12)

It will be convenient for latter use to define the associated scalar field ϕ defined
by

ϕ ≡ A+ i B.

This scalar field changes under the above map as a rotation of 2α :

ϕ̃ = e−2iα ϕ.

It follows that the Heisenberg potential is invariant under such map Ṽ = V. The
kinematical part of Lagrangian does not change if the parameter α is constant.
Thus, Heisenberg dynamics is invariant under such constant γ5−map.

A.3. Fundamental solution

In linear Dirac dynamics a particular class of solutions (plane waves) is charac-
terized by the eigenstate property

∂µΨ = i kµΨ.

In the nonlinear Heisenber dynamics it is possible to find solutions that are
defined by the property

∂µΨ =
(
a Jµ + b Iµγ

5
)
Ψ (A.13)

where a and b are complex numbers of dimensionality (lenght)2.
It is immediate to prove that if Ψ satisfies this condition it satisfies automat-

ically Heisenberg equation of motion if a and b are such that 2s = i (a− b).
This is a rather strong condition that deals with simple derivatives instead

of the scalar structure obtained by the contraction with γµ typical of Dirac or
even for the Heisenberg operators that appear in Dirac equation and in equation
(A.1). Prior to anything one has to examine the compatibility of such condition
which concerns all quantities that can be constructed with such spinors. It is
a remarkable result that in order that the fundamental condition eq. (A.13)
to be integrable constants a and b must satisfy a unique constraint given by
Re(a)− Re(b) = 0.
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Indeed, a direct calculation gives

∂µJν = (a+ a)JµJν + (b+ b)IµIν (A.14)

∂µA = (a + a)AJµ + (b− b) iB Iµ. (A.15)

∂µB = (a+ a)B Jµ + (b− b) iAIµ. (A.16)

∂µIν = (a+ a)JµIν + (b+ b)JνIµ. (A.17)

Thus,
[∂µ, ∂ν ] Ψ =

(
a ∂[µ Jν] + b ∂[µ Iν] γ

5
)
Ψ.

Now, the derivative of the currents yields

∂µJν − ∂νJµ = (a+ a)[Jµ, Jν ] + (b+ b) [Iµ, Iν ],

and
∂µIν − ∂νIµ = (a+ a− b− b)[Jµ Iν − Iµ Jν ].

Thus the condition of integrability is given by

Re(a) = Re(b). (A.18)

It is a rather long and tedious work to show that any combination X con-
structed with Ψ and for all elements of the Clifford algebra, the compatibility
condition [∂µ, ∂ν ]X = 0 is automatically fulfilled once this unique condition
(A.18) is satisfied.

A.4. Double Heisenberg dynamics

The invariance of Heisenberg potential under the γ5−map allows to consider
more general non-linear terms to be added to the dynamics which still mantains
the invariance of the theory. Let us consider an extra quadratic term such that
the potential becomes

W = s(A2 +B2) + q (A2 +B2)2 (A.19)

The dynamics that follows is

iγµ∂µΨ− 2
(
s+ 2 q J2

)
(A+ iBγ5) Ψ = 0 (A.20)

Should this new dynamics still admits a fundamental solution along the same
lines as in the previous case discussed in the precedent session? We shall prove
now that this is indeed possible in the case in which the norm of the current is
constant J2 = J2

0 . Let us set

∂µΨ =
(
â Jµ + b̂ Iµγ

5
)
Ψ (A.21)
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where
â ≡ a+ α J2

and
b̂ ≡ b+ β J2.

Then, equation (A.21) satisfies identically equation (A.20 ) if the parameters
are related by

2 s = i(a− b)
4 q = i(α − β) (A.22)

Following the same lines as above the integrability condition is given by

a+ ā = b+ b̄ (A.23)

α + ᾱ = β + β̄ (A.24)

J2
0 = − a+ ā

α + ᾱ
. (A.25)

A.4.1. Spontaneous symmetry breaking

Among all possible values of the norm of the current J2
0 there are three that are

singled out once they extremize the potential (A.19). The first one occurs when
the norm of the current vanishes. In this case both scalars A and B vanish and
the field reduces to an eigenstate of γ5. This case is of no interest for us, once
it represents an unstable state. The other two values are symmetrical under
reflection ϕ ⇒ −ϕ. In this case the non-linear equation ( A.20 ) is reduced to
particular solutions of the linear massless Dirac field, subjected to the constraint
that minimizes the potential given by

J2
0 = − s

2q
> 0. (A.26)

Equivalent dynamics

Let us now prove a remarkable result that occurs when the field satisfy the
fundamental solution. From the equation (A.21) it follows

∂µA = −i pB Iµ. (A.27)

∂µB = i pA Iµ. (A.28)

where
p ≡ b− b̄+ (β − β̄) J2

0 . (A.29)

Then,
∂µA∂

µA = p2 J2
0 A

2 (A.30)
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∂µB ∂µB = p2 J2
0 B

2 (A.31)

That is,
∂µA∂

µA + ∂µB ∂µB = p2 (A2 +B2)2 (A.32)

In terms of the associated scalar field ϕ = A+i B the double potential is nothing
but the ”kinematical” term once we can write

∂µϕ
∗ ∂µϕ = p2 J2. (A.33)

The result displayed by equation ( A.33) can be used to convert Lagrangian

L = LD −W = LD − s(A2 +B2)− q (A2 +B2)2 (A.34)

into the form
L = LD − s(A2 +B2)− σ ∂µϕ∗ ∂µϕ (A.35)

where σ ≡ p2/q. Indeed, the dynamics that follows from Lagrangian ( A.35 ) is
given by

iγµ∂µΨ− 2s (A+ iBγ5) Ψ + 2σ (�A + i�B γ5)Ψ = 0 (A.36)

In the fundamental state we can write

(�A + i�B γ5)Ψ = − 2q

σ
(A + i B γ5) J

2Ψ (A.37)

Thus, this equation ( A.36 ) goes into

iγµ∂µΨ− 2s (A+ iBγ5) Ψ− 4q J2 (A+ i B γ5) Ψ = 0 (A.38)

The same result follows if one changes the fundamental state condition prior
to the variation on Lagrangian ( A.35). This led us to conclude that when the
system is in the fundamental state, the double potential can be substituted by
the term ∂µϕ

∗ ∂µϕ.

A.5. From global to local symmetry

In the case the parameter α of equation ( A.11) is a space-time dependent func-
tion, the global symmetry is broken. In order to restore locally the symmetry
we follow the standard procedure and couple minimally the spinor-field with an
external vector field Wµ. To preserve the symmetry the gauge field must couple
to the axial current through the form

L =
i

2
Ψ γµ (∂µ − ig Wµ γ5)Ψ

− i

2
(∂µ − ig Wµ γ5)Ψ γµ Ψ− s(A2 +B2)

− σ (∂µ + 2i gWµ)ϕ
∗ (∂µ − 2i gW µ)ϕ− 1

4
F (A.39)
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where F = Fµν F
µν and Fµν ≡ Wµ,ν −Wν,µ. The local symmetry is guaranteed

by the invariance of Fµν under the gauge map W̃µ =Wµ − g−1 ∂µα.
The fundamental state (A.21) that minimizes the potential when Ψ = Ψs is

such that the norm of the current is constant J2
0 = − s/2q > 0. This corre-

sponds to a spontaneous broken symmetry. We then expand the field about
this particular value of the minimum of the potential:

Ψ = Ψs + χ. (A.40)

Introducing this fluctuation in equation ( A.39 ) it follows that, among others, it
appears a term of the form m2WµW

µ. The presence of this term is responsible
to provide a mass for the gauge field given by

m2 = 4 g2σ J2
0 .

A.6. Comments

In the present scheme the responsible for giving mass to the gauge vector is
the Heisenberg spinor field Ψ. This is made through the intervening of the
auxiliary field ϕ. This scalar field appears as a kind of bosonisation, which can
be interpreted as the actual vehicle for the generation of the effective mass.
In the fundamental state, the associated quantity ϕ acts as a scalar field that

satisfies the equation
�ϕ + p2 J2

0 ϕ = 0. (A.41)

Once p given by (A.29) is an imaginary number, ϕ posses an imaginary mass.
This causes no difficulty, once ϕ is nothing but an auxiliary field1. This situation
is very similar as to what occurs in the Higgs mechanism driven by a boson
field: originally the boson appears to have an imaginary mass that allows the
existence of a stable equilibrium point. Due to this, it follows that the gauge
field interacting with such scalar acquires a real value for its mass: the imaginary
mass of the scalar field induces a real mass for the gauge field.
Let us emphasize that the present mechanism is able to give mass only to

gauge vector fields that couples with the axial current of the Heisenberg spinor.
Thus such scheme does not change the fact that the photon is massless.

1Note that a plane wave solution of the double Heisenberg field Ψ can be associated to an
effective real positive mass term, in the case the norm of the current is constant.
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B. Gravitational Waves in Singular
and Bouncing FLRW Universes:
V. Antunes - E. Goulart - M.
Novello

B.1. abstract

We investigate the propagation of gravitational waves in two models belonging
to the Friedman-Lemâıtre-Robertson-Walker (FLRW) class of cosmologies: the
singular Einstein-Maxwell Universe (EMU), which has the electromagnetic field
described by Maxwell’s electrodynamics as the source of its geometry, and the
bouncing Nonlinear Electrodynamics Universe (NLEU), which has the electro-
magnetic field described by a non-linear generalization of Maxwell’s electrody-
namics as the source of its geometry. We work with an explicitly gauge indepen-
dent formulation of cosmological perturbations in FLRW models and analyze
the qualitative features of the dynamical system that describes the propagation
of primordial tensorial perturbations in both geometries. Based on this analy-
sis we show that gravitational waves generated near a singularity or a bounce
exhibit qualitatively different behavior.

B.2. Introduction

In the Standard Cosmology, the model adopted to describe the “radiation era”
of our universe consists of a Friedman-Lemâıtre-Robertson-Walker (FLRW) ge-
ometry with the electromagnetic field described by Maxwell’s electrodynamics
as its source [1]. This is the so called Einstein-Maxwell Universe and is gener-
ally considered a good description of the primitive universe at large scales after
inflation. However, the fact that this model presents an initial singularity in its
past, among other problems, suggests the necessity of formulating an alternative
description which does not exhibits such undesired features.

Many attempts to formulate nonsingular nonstationary, or bouncing, FLRW
models have been made in the past appealing to a variety of different mechanisms
[2, 3, 4, 5, 6, 299, 8, 9, 24]. In most of these attempts, however, a radical
revision of the Standard Cosmology is proposed, either by introducing exotic
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forms of matter with negative energy density in the model, or by modifications
in Einstein’s theory of gravitation or the space-time structure.

Recently, a less radical alternative was proposed where the radiation era is
modeled by a FLRW geometry with the electromagnetic field described by a
non-linear generalization of Maxwell’s electrodynamics as its source [11]. Mat-
ter is identified with a primordial plasma with negligible bulk viscosity terms
in its electric conductivity [11, 391, 94], which is equivalent to taking only the
average squared of the magnetic field b2 as non-null [391, 14, 15]. In this model,
a negative pressure in the primitive universe avoids the singularity, while the
energy density is always positive. Non-linear corrections are important only in
the initial stages of evolution of the universe, where the fields are very intense,
and thus are insignificant at later eras. This will be called the Nonlinear Electro-
dynamics Universe, and will be taken here as a representative of the Bouncing
Cosmology.

Although singular and bouncing models exhibit very different space-time
structures in the primitive universe, they obviously must agree on its predic-
tions about later eras. This poses the problem of how can one decide, on exper-
imental grounds, which of these models is a better description of our Universe.
A natural way to look for such experimental criteria would be to compare the
way the presence of a bounce affects the evolution of primordial perturbations.
In particular, gravitational waves seem to be specially suited to provide infor-
mation about the space-time structure in early epochs of our universe, since,
contrary to what happens with electromagnetic radiation, they are not shielded
by any kind of matter.

In this article we compare the propagation of gravitational waves in the
Einstein-Maxwell Universe (EMU) and the Nonlinear Electrodynamics Universe
(NLEU). We work with an explicitly gauge invariant formulation of cosmolog-
ical perturbations in models of the FLRW class, which we briefly discuss in
section B.3. In section B.4 we consider the dynamical system that describes the
evolution of tensorial perturbations in the EMU and NLEU. These perturba-
tions represent gravitational waves propagating in an unperturbed background
geometry. We next analyze the qualitative features of this dynamical system
in both models. Finally, in section B.5 we compare the results and show that
waves generated near a singularity or a bounce exhibit qualitatively different
behavior.

B.3. Preliminaries

We adopt Einstein’s theory of gravitation, in which space-time is represented
as a four-dimensional semi-Riemannian manifold with a metric tensor gαβ with
signature (+ − −− ), where Greek indices run into the set {0, 1, 2, 3}. Gravity
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is described by the field equations

Rαβ −
1

2
Rgαβ = −Tαβ . (B.1)

In the FLRW class of cosmological models, matter is identified with a perfect
fluid with energy momentum tensor of the form

Tαβ = ρVαVβ + phαβ , (B.2)

where ρ is the density, p the pressure, V α the velocity field of the fluid, with
gαβV

αV β = +1, and hαβ = gαβ − VαVβ is the spatial metric, from which we
can define the projecting operator h β

α = δ β
α − VαV

β which projects into the
subspace orthogonal to V α. Projected quantities will be represented with a hat,
e.g. V̂α ≡ h β

α Vβ. We define the kinematical quantities, expansion Θ , shear σαβ
and vorticity ωαβ , as follows

1

Θ ≡ ∇αV
α , (B.3)

σαβ ≡
1

2
∇̂(βVα) −

1

3
Θhαβ , (B.4)

ωαβ ≡
1

2
∇̂[βVα] , (B.5)

where the symbol ∇ denotes covariant differentiation. In terms of these quan-
tities, the gradient of the velocity field can be decomposed in its irreducible
components

∇βVα = σαβ +
1

3
Θhαβ + ωαβ + V̇αVβ , (B.6)

where V̇ α ≡ V β∇βV
α is the acceleration. We also define the vorticity vector

ωα ≡ −1
2
ηαβµνωβµVν , (B.7)

where ηαβµν is the Levi-Civita alternating tensor. Taking the derivative (∇βVα)
˙

and using this decomposition, one can derive the kinematical equations that
describe the evolution of the expansion, shear and vorticity [16, 17].
The Riemann curvature tensor Rαβµν can be decomposed in a “source” part,

which depends on matter-energy distribution, and a trace-free part, the Weyl
conformal curvature tensor Wαβµν , defined by the expression

Wαβµν = Rαβµν −Mαβµν +
1

6
gαβµν , (B.8)

where
gαβµν ≡ gαµgβν − gανgβµ (B.9)

1We adopt the conventions Q(αβ) ≡ Qαβ +Qβα and Q[αβ] ≡ Qαβ −Qβα, where Qαβ is any
2-covariant tensor.
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and
2Mαβµν ≡ Rαµgβν +Rβνgαµ −Rανgβµ −Rβµgαν , (B.10)

so that Wαβµν is the part of the curvature which is not determined locally by
the matter-energy distribution, and thus represents the free gravitational field.
By analogy with electrodynamics, we can define the electric end magnetic parts
of the Weyl tensor with respect to a particular observer with four-velocity V α,
respectively, as

Eαβ = −WαµβνV
µV ν , (B.11)

Bαβ = −W ∗
αµβνV

µV ν . (B.12)

where ∗ denotes the (Hodge) dual2. These definitions imply that the tensors
Eαβ and Bαβ are symmetric, traceless and belong to the three-dimensional space
orthogonal to V α. The combination of Einstein’s equations and Bianchi identi-
ties allows the field equations of gravitation to be written in a form very similar
to the field equations of electrodynamics [225, 19]

∇σW
αβρσ = Jαβρ , (B.13)

Jαβρ ≡ −1
2
∇[βT α]ρ +

1

6
gρ[β∇α]T . (B.14)

The four independent projections of the divergence of the Weyl tensor

hσαVβVµ∇νW
αβµν , (B.15)

ηλσαβV
λVµ∇νW

αβµν , (B.16)

hµ(σηρ)λαβV
λ∇νW

αβµν , (B.17)

hµ(ρhσ)αVβ∇νW
αβµν , (B.18)

leads to field equations, for a perfect fluid energy-momentum tensor, involving
the tensors Eαβ and Bαβ and the kinematical quantities Θ , σαβ , and ωαβ, with
the form [150, 21]

2That is Q∗

αβ = 1
2ηαβµνQ

µν .
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hαβhρσ∇σEβρ + ηαβµνV
βBνρσµρ + 3Bαβωβ =

1

3
hαβ∇βρ , (B.19)

hαβhρσ∇σBβρ − ηαβµνV βEνρσµρ − 3Eαβωβ = (ρ+ p)ωα , (B.20)

hαµh
β
νĖ

µν +ΘEαβ − 1

2
E (α
µ σβ)µ − 1

2
E (α
µ ωβ)µ

+ ηαρµνηβσλθVρVλEµθσνσ + V̇µB
(α
ν ηβ)λµνVλ

− 1

2
h (β
σ ηα)λµνVλ∇µB

σ
ν = −1

2
(ρ+ p)σαβ , (B.21)

hαµh
β
νḂ

µν +ΘBαβ − 1

2
B (α
µ σβ)µ − 1

2
B (α
µ ωβ)µ

+ ηαρµνηβσλθVρVλBµθσνσ − V̇µE (α
ν ηβ)λµνVλ

+
1

2
h (β
σ ηα)λµνVλ∇µE

σ
ν = 0 . (B.22)

These are called quasi-Maxwellian equations of Gravitation in the Jordan-Ehlers-
Kundt (JEK) formalism [225].
The class of FLRW universes is kinematically characterized by the null quan-

tities V̇ α = 0, σαβ = 0 and ωαβ = 0. In this case, the space-time can be locally
foliated by three-dimensional hyper-surfaces orthogonal to the flow lines of the
fluid, each of these spatial sections having constant curvature. This implies that
FLRW background geometry can be expressed, in the standard Gaussian system
of coordinates, by the FLRW metric:

ds2 = dt2 −A2(t)

{
dr2

1− ǫr2 + r2 (dθ2 + sin2θ dϕ2)

}
, (B.23)

where A is the scale factor and ǫ = −1, 0,+1 correspond to open, flat and closed
spatial geometries, respectively. In terms of the conformal time τ =

∫
A−1dt,

the metric (B.23) assume a conformally flat form. Since the Weyl tensor is null
on conformally flat space-times, the JEK formalism leads to an explicitly gauge
independent formulation of cosmological perturbations on models belonging to
the FLRW class [22, 23].

B.4. Gravitational Waves

We now consider perturbations of purely tensorial quantities only in the formal-
ism we have outlined in the previous section. These are exactly the perturbations
of the Weyl tensor which are not associated with density perturbations, and thus
represent gravitational waves propagating in the unperturbed background ge-
ometry. We set δVα = 0, δV̇α = 0, δωα = 0, δΘ = 0, δρ = 0 and δp = 0. As
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already mentioned, the background geometry is kinematically characterized by
the null quantities V̇α = 0, σαβ = 0 and ωαβ = 0. Since the Weyl tensor is null
on conformally flat space-times, we also have Eαβ = 0 and Bαβ = 0 in the back-
ground. In the perturbed geometry, therefore, for all these quantities we can set
Eαβ = δEαβ , Bαβ = δBαβ, and so on. Thus, the perturbed quasi-Maxwellian
equations, in this case, assume the form [21]

hαβhρσ∇σEβρ = 0 , (B.24)

hαβhρσ∇σBβρ = 0 , (B.25)

h µ
α h

ν
β Ėµν +ΘEαβ −

1

2
h µ
(αh

ν
β)Vθη

θλρ
ν ∇λBρµ +

1

2
(ρ+ p)σαβ = 0 , (B.26)

h µ
α h

ν
β Ḃµν +ΘBαβ +

1

2
h µ
(αh

ν
β)Vθη

θλρ
ν ∇λEρµ = 0 . (B.27)

We also have the perturbed auxiliary kinematical equation

h µ
α h

ν
β σ̇µν +

2

3
Θσαβ + Eαβ = 0 , (B.28)

and the perturbed constraint equation

1

2
h µ
(αh

ν
β)Vθη

θλρ
ν ∇λσρµ = Bαβ . (B.29)

We define a basis of tensorial harmonics Û
(k)
αβ on each spatial section by

[259, 25]

∇̂2Û
(k)
αβ =

k2

A2
Û

(k)
αβ , (B.30)

where ∇̂2 ≡ hαβ∇α∇β and k is the wavenumber. This basis is symmetric,

Û
(k)
αβ = Û

(k)
βα , and has the following additional properties

(
Û

(k)
αβ

)̇
= 0 , hαβÛ

(k)
αβ = 0 , ∇̂αÛ

(k)
αβ = 0 . (B.31)

We also define the associated tensorial basis [25]

PÛ
(k)
αβ ≡

1

2
h λ
(αh

µ
β)Vθη

ρσθ
λ∇σÛ

(k)
µρ , (B.32)

which satisfies the following relations

(
PÛ

(k)
αβ

)̇
= −1

3
Θ PÛ

(k)
αβ , (B.33)

PPÛ
(k)
αβ =

(
ρ− 1

3
Θ2 +

k2

A2

)
Û

(k)
αβ . (B.34)
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In terms of these bases, the perturbed tensorial quantities can be expanded
as follows

Êαβ =
∑

E(k) Û
(k)
αβ , (B.35)

B̂αβ =
∑

B(k) PÛ
(k)
αβ , (B.36)

σ̂αβ =
∑

σ(k) Û
(k)
αβ . (B.37)

Using these expansions and relations (B.31)-(B.34), the constraint equation
(B.29) assumes the form

σ − B = 0 , (B.38)

where we have dropped the indices k for notational simplicity. Thus, the system
of perturbed quasi-Maxwellian equations (B.24)-(B.27), together with the per-
turbed auxiliary kinematical equation (B.28) and constraint equation (B.29),
reduces to the following set of closed dynamical systems for the coefficients of
the electric part of the Weyl tensor E and the shear σ [25]

Ė +ΘE −
{
1

2
(ρ− p)− 1

3
Θ2 +

k2

A2

}
σ = 0 , (B.39)

σ̇ +
2

3
Θσ + E = 0 , (B.40)

where A is the scale factor. This system completely describes the propagation
of gravitational waves in FLRW backgrounds. Making the definitions

X ≡
(
E
σ

)
, S ≡

(
−Θ f
−1 −2

3
Θ

)
, (B.41)

where f ≡ 1
2
(ρ − p) − 1

3
Θ2 +

(
k
A

)2
, we can write the system (B.39)-(B.40) in

matrix form as follows

Ẋ = S(t, µ)X (B.42)

where µ is proportional to k2 . We remark that for non-stationary universes the
fundamental matrix S(t, µ) depends explicitly on time, and the linear system
(B.42) is non-autonomous. However, it can be trivially mapped into an au-
tonomous 3-dimensional non-linear system by defining a new parameter s and
writing (

Ẋ
ṫ

)
=

(
S(t, µ)X

1

)
(B.43)

where the dot now means derivation with respect to s . Let us denote the right
hand side of equation (B.43) by φ(X, t, µ) . One can obtain information about
the qualitative behavior of system (B.43) in a neighborhood U(t0) × I(t0) of
a point (X, t) = (0, t0) , where U(t0) is contained in the t = t0 section of the
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phase-space and I(t0) is an interval of the t-axis containing t0 , by making the
expansion of φ with respect to E and σ up to first order

φ(X, t)|U(t0) ≈ φ0 +

(
∂φ

∂E

)

|(0,t0)
E +

(
∂φ

∂σ

)

|(0,t0)
σ (B.44)

where φ0 = (0, 1) . This leads to the linearized form of the system (B.43)

(
Ẋ
ṫ

)
≈
(
S(t0, µ)X

1

)
(B.45)

valid in the region U(t0)× I(t0) , with the following solution

(
X(s)
t(s)

)
≈
(
esS(t0)X0

s+ t0

)
(B.46)

for (X0, t0) in U(t0) . This allows one to determine the integral curves of system
(B.45) contained in the “tube” U(t0)×I(t0) . However, we are mainly interested
in the characterization of the qualitative behavior of those integral curves. From
equation (B.46) it follows that this behavior is determined by the eigenvalues
of the matrix S, and since detS > 0 on both models considered here, one
concludes that there are only two possible behaviors, according to the sign of
the discriminant ∆ = (trS)2−4 detS. However, instead of studying the behavior
of those integral curves directly, using equation (B.46), we will determine for
each fixed value of t in U(t0) × I(t0) the phase diagrams of equation (B.45) in
the neighborhood U(t) contained in the corresponding t = const. section. This
can be viewed as a time projection of the integral curves, in this approximation.
We also define, for convenience, the new “discriminant”

δ ≡ log

[
(trS)2

4 detS

]
, (B.47)

which has exactly the same properties as ∆ in what concerns the determination
of the qualitative behavior of the integral curves of system (B.45) and its t =
const. phase diagrams, namely trajectories form a focus if δ < 0, or they form
a node if δ > 0. Since the sign of δ is invariant in a sufficiently small region
U(t0) × I(t0), we can foliate it by t = const. sections and classify their phase-
space structure according to the nature of the phase diagrams. We will say that
U(t0)× I(t0) has a focus or a node structure, accordingly. This leads to a way
to compare the structure of the phase-space of system (B.43) along the t-axis
for different models.

We now apply this procedure to study the properties of the dynamical system
(B.42) in the Einstein-Maxwell Universe (EMU) and the Nonlinear Electrody-
namics Universe (NLEU).
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B.4.1. Gravitational Waves in the Einstein-Maxwell Universe

The source of the background geometry in Einstein-Maxwell Universe (EMU)
is the electromagnetic field as described by Maxwell’s electrodynamics. Since in
FLRW universes the spatial sections are isotropic, only a disordered distribution
of electromagnetic radiation can generate a model of this class. This is attained
by a process of spatial average of electric and magnetic fields over large scales
[26, 27]. The spatial average of an arbitrary quantity Q is defined as follows

〈Q〉 ≡ lim
V→V0

1

V

∫ √
−hQd3x , (B.48)

for an arbitrarily large time-dependent spatial volume V0 =
∫ √
−h d3x, where

h ≡ det(hαβ). Electric and magnetic fields will be denoted by lowercase letters.
We set the spatial averages

〈ei〉 = 0 , 〈bi〉 = 0 , 〈eibj〉 = 0 , (B.49)

〈eiej〉 = −
1

3
e2hij , (B.50)

〈bibj〉 = −
1

3
b2hij , (B.51)

where the Latin indices run into the set {1, 2, 3}. As a result, the energy-
momentum tensor for electromagnetic radiation assumes the form of the one for
a perfect fluid

〈Tαβ〉 = ργVαVβ + pγhαβ , (B.52)

with density and pressure defined by the relation ργ = 3pγ = (e2 + b2)/2.
Restricting our analysis to the flat case3 (ǫ = 0), from Einstein’s field equa-

tions and the kinematical equations mentioned in the preceding section, it fol-
lows that the EMU is characterized by the following unperturbed quantities
[355, 29]

A(t) = A0t
1/2 , (B.53)

ργ(t) = 3pγ(t) =
3

4t2
, (B.54)

Θ(t) =
3

2t
, (B.55)

where A0 is an arbitrary constant. It is clear that A → 0 as t → 0, and so the
EMU has an initial singularity, as expected. From these expressions we see that
the discriminant δ, in this case, assumes the form

δ(t, µ) = log

[
9

16µt

]
, (B.56)

3Since we are interested in the behavior of gravitational waves in the primitive universe,
there is no loss of generality in this choice.

1977



where µ ≡ k2/A2
0. The figure shows the behavior of δ for three particular values

of the parameter µ. The solution of the equation δ(t, µ) = 0 determines the time
where a change in the local structure of the phase-space of the system occurs

tc(µ) =
9

16µ
=

9A2
0

16(2π)2
λ2 , (B.57)

where we have expressed the parameter µ in terms of the wavelength λ = 2π/k.
Thus, for all finite wavelengths, the structure of the phase-space of the system
presents a node/focus transition, i.e. for t < tc it has a node structure, and for
t > tc it has a focus structure (table B.1).
We remark that trS < 0 for all t, and the integral curves of the system are

asymptotically stable in the EMU. This is nothing but a consequence of the
fact that the expansion of the universe causes a damping of gravitational waves.
Since the frequency is inversely proportional to A, these waves are red-shifted
by the expansion of the universe.

B.4.2. Gravitational Waves in the Nonlinear Electrodynamics
Universe

We now consider the cosmological model of the FLRW class which has as the
source of its geometry the electromagnetic field as described by a toy-model
generalization of Maxwell’s electrodynamics. This is defined by the non-linear
Lagrangian [11]

L = −1
4
F + αF 2 + βG2 , (B.58)

where F ≡ FαβF
αβ and 2G ≡ ηαβµνF

αβF µν are the field invariants. By a similar
process of macroscopic spatial average as mentioned in the preceding section,
and identifying the matter with a primordial plasma with null average electric
field, the energy-momentum tensor assumes again the form of the one for a
perfect fluid (E.344), with density and pressure given by the expressions

ργ =
1

2
b2(1− 8αb2) , (B.59)

pγ =
1

6
b2(1− 40αb2) . (B.60)

From these expressions one can see that for α in the interval 1
40b2

< α < 1
8b2

the
pressure can become negative for high values of b, as expected in the primitive
universe, while the density is always positive.
Restricting, as before, our analysis to the flat case (ǫ = 0), the Nonlinear Elec-

trodynamics Universe (NLEU) is characterized by the unperturbed quantities
[11]

A2(t) = b0

[
2

3
( t2 + 12α )

]1/2
, (B.61)
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ργ(t) =
3

4

t2

(t2 + 12α)2
, (B.62)

pγ(t) =
1

4

t2 − 48α

(t2 + 12α)2
, (B.63)

Θ(t) =
3

2

t

(t2 + 12α)
, (B.64)

where b0 = bA2 = const. In this case we see that at t = 0 the universe attains

a minimum radius A2
min = b0

√
8α. Making the choice A2

0 =
√

2
3
b0, where A0 is

defined as in equation (B.53), the discriminant δ assumes the form

δ(t, µ;α) = log

[
9t2 − 96α

16µ(t2 + 12α)3/2

]
, (B.65)

where again µ ≡ k2/A2
0. We can see that the scale factor A and the discriminant

δ here coincides with those for the EMU as α → 0. This is clearly also true
for t→∞, so that non-linear corrections of Maxwell’s electrodynamics are only
relevant in the primitive universe, as mentioned before. Since δ is symmetric in
t, we restrict our analysis to the expansive phase t > 0. The figure (bottom)
shows the behavior of δ for three particular values of µ and for α = 0.01.
The equation δ(t > 0) = 0 has two solutions, one solution or no solution at
all, depending on the value of the parameter µ. Thus, the structure of the
phase-space of the system in the expansive phase presents a focus/node/focus
transition, or no transition at all (always a focus), according to µ < µc(α) or
µ > µc(α), respectively

4. We denote the critical times associated with the case
µ < µc(α) by t

+
c 1(α) and t

+
c 2(α), where t

+
c 1(α) < t+c 2(α). Table B.1 shows the

possible structures of the phase-space of the system in the expansive phase for
each range of wavelengths.
We remark that trS < 0 for t > 0 and the integral curves of the system

are asymptotically stable. Again, gravitational waves are red-shifted by the
expansion of the universe.
As we have mentioned before, δ is symmetric in t and thus the same behavior

found for the system in the expansive phase is also found in the contractive,
pre-bounce, phase (t < 0), except that now, since trS > 0, the integral curves
are unstable and gravitational waves are blue-shifted until the bounce (t→ 0).

B.5. Comparative Analysis

The figure compares the behavior of δ in the EMU (top) and the NLEU (bottom)
for values of µ in the ranges µ < µc(α) and µ > µc(α), respectively. This shows

4We ignore the case µ = µc(α) for which the equation δ(t > 0) = 0 has only one solution,
since in the corresponding critical time no change of the local phase-space structure occurs,
and thus this is equivalent to the case µ > µc(α)
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Table B.1.: Structure of the phase-space of S in the EMU and NLEU (t > 0) as
a function of the wavelength λ.

model wavelength time interval structure

EMU1

0 < λ <∞ 0 < t < tc node
tc < t <∞ focus

NLEU2 λc < λ <∞
0 < t < t+c 1 focus
t+c 1 < t < t+c 2 node
t+c 2 < t <∞ focus

0 < λ < λc 0 < t <∞ focus

a clear difference between the structure of the phase-space of the system (B.43)
in these models near t = 0 , which corresponds either to the singularity or the
bounce.
In the NLEU, for waves with wavelengths in the range λ > λc(α) , it is the

critical time t+c 1(α) that determines how near of t = 0 those waves should be
generated for the different behavior to emerge, while for waves with wavelengths
in the range λ < λc(α), it is the critical time tc defined in eq. (B.57) that
determines this boundary. This has the advantage of being independent of α.
In the singular EMU model the phase-space structure of the system exhibit a

node/focus transition. This structure is independent of the perturbation wave-
length. On the other hand, for the bouncing NLEU model the phase-space
structure may exhibit a focus/node/focus transition, or no transition at all, ac-
cording to the values of the perturbation wavelength. Although only in the first
case, i.e. λ > λc, there is the double regime transition, both cases present a
focus structure near the bounce, in contrast to what is observed in the singular
case. Table B.1 shows a comparison between the structure of the phase-space of
system (B.45) in EMU and NLEU. The figure gives schematic representations
of the structure of the phase-space of system (B.45) in EMU (top), NLEU for
λ > λc (center) and λ < λc (bottom).

B.6. Conclusion

In this article we have investigated the propagation of gravitational waves in
a singular and a bouncing model for the radiation era of our universe. In the
model adopted here as a representative of the Bouncing Cosmology, the source
of the geometry is a nonlinear generalization of Maxwell’s electrodynamics. The
avoidance of the singularity is due to nonlinear corrections of Maxwell’s theory.
In both cases, we see that the measurement of tidal effects and the shear

anisotropy of a system of test particles on a gravitational antenna would result
in E-σ curves for waves generated shortly after the singularity or the bounce
(that is, near t = 0) with a non-periodic or a periodic behavior, respectively.
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This analysis suggests that there will be regimes associated with sufficiently
large wavelengths for which we expect a different behavior for primordial per-
turbations propagating in a singular or a bouncing background geometry. This
qualitative analysis could be used, at least in principle, to characterize the pres-
ence of a singularity or a bounce in our universe.
Even though the advanced stage of development of some gravitational wave

detectors suggests that the observation of these waves is about to become a
reality in the next years, the “cooling down” caused by the expansion of the
universe would make it extremely difficult to detect waves of cosmic origins, such
as those generated in the primitive universe. In any case, the study of tensor
perturbations would still be very significant if somehow we could associate the
propagation of gravitational waves with other physical processes (see [30]).
We postpone a careful investigation of the subtle experimental issues related

to the analysis presented here to another paper.

Acknowledgments
The authors would like to thank CNPq and FAPERJ for a grant.

1981



1982



Bibliography

[1] E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Red-
wood City, CA, 1988).

[2] M. Novello and S. E. Perez Bergliaffa, Phys. Rep. 463 (2008), 127.

[3] W. de Sitter, Proc. Kon. Ned. Akad. Wet. 19 (1917), 1217.

[4] M. Novello and J. M. Salim, Phys. Rev. D 20 (1979), 377.

[5] V. Mukhanov and R. Brandenberger, Phys. Rev. Lett. 68 (1992), 1969.

[6] M. Novello, A. R. Oliveira, J. M. Salim and E. Elbaz, Int. J. Mod. Phys.
D 1 (1993), 641.

[7] G. L. Murphy, Phys. Rev. D 8 (1973), 4231.

[8] J. M. Salim and H. P. Oliveira, Acta Phys. Pol. B 8 (1988), 649.

[9] J. Acacio de Barros, N. Pinto-Neto and M. A. Sagioro-Leal, Phys. Rev.
Lett. A 241 (1998), 229.

[10] G. Veneziano, hep-th/0002094 (2000).

[11] V. A. De Lorenci, R. Klippert, M. Novello and J. M. Salim, Phys. Rev. D
65 (2002), 063501.

[12] T. Tajima, S. Cable, K. Shibata and R. M. Kulsrud, Astrophys. J. 390
(1992), 309.

[13] A. Campos and B. L. Hu, Phys. Rev. D 58 (1998), 125021.

[14] G. G. Dune, Int. J. Mod. Phys. A 12 (1997), 1143.

[15] M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79 (1997), 1193.

[16] A. Raychaudhuri, Phys. Rev. 98 (1955), 1123.

[17] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time
(Cambridge University Press, Cambridge, 1973).

[18] P. Jordan, J. Ehlers and W. Kundt, Akad. Swiss. Mainz. Abh. Math-Nat.
Kl. Jagh. 2 (1960).

[19] A. Lichnerowicz, Ann. Math. Pura Appl. 50 (1960), 1.

[20] G. F. R. Ellis in Proceedings of the International School of Physics “Enrico
Fermi” (Academic, London, 1971), p. 104.

[21] M. Novello and J. M. Salim, Fund. Cosm. Phys. 8 (1983), 201.

[22] S. W. Hawking, Astrophys. J. 145 (1966), 544.

1983



[23] J. M. Stewart and M. Walker, Proc. R. Soc. A 341 (1974), 49.

[24] E. M. Lifshitz and I. N. Khalatnikov, Adv. Phys. 12 (1963), 185.

[25] M. Novello, J. M. Salim, M. C. Mota da Silva, S. E. Jorás and R. Klippert,
Phys. Rev. D 52 (1995), 730.

[26] R. C. Tolman and P. Ehrenfest, Phys. Rev. D 36 (1930), 1791.

[27] M. Hindmarsh and A. Everett, Phys. Rev. D 58 (1998), 103505.

[28] H. P. Robertson, Rev. Mod. Phys. 5 (1933), 62.

[29] R. Coquereaux and A. Grossmann, Ann. Phys. 143 (1982), 296.

[30] L. P. Grishchuk, 0707.3319v2 [gr-qc] (2007)

1984



C. Scalar Perturbations in Scalar
Field Quantum Cosmology : F.
T. Falciano -N. Pinto-Neto

In this paper it is shown how to obtain the simplest equations for the Mukhanov-
Sasaki variables describing quantum linear scalar perturbations in the case of
scalar fields without potential term. This was done through the implementation
of canonical transformations at the classical level, and unitary transformations
at the quantum level, without ever using any classical background equation,
and it completes the simplification initiated in investigations by Langlois [2],
and Pinho and Pinto-Neto [4] for this case. These equations were then used
to calculate the spectrum index ns of quantum scalar perturbations of a non-
singular inflationary quantum background model, which starts at infinity past
from flat space-time with Planckian size spacelike hypersurfaces, and inflates
due to a quantum cosmological effect, until it makes an analytical graceful exit
from this inflationary epoch to a decelerated classical stiff matter expansion
phase. The result is ns = 3, incompatible with observations.

C.1. Introduction

The usual theory of cosmological perturbations, with their simple equations
Ref. [1], relies essentially on the assumptions that the background is described
by pure classical General Relativity (GR), while the perturbations thereof stem
from quantum fluctuations. It is a semiclassical approach, where the back-
ground is classical and the perturbations are quantized, and the fact that the
background satisfies Einstein’s equations is heavily used in the simplification of
the equations. In Refs. [3, 4, 5], which assume the validity of the Einstein-Hilbert
action, it was shown that such simple equations for quantum linear cosmologi-
cal perturbations can also be obtained without ever using any equations for the
background. This can be accomplished through a series of canonical transfor-
mations and redefinitions of the lapse function. These results open the way to
also quantise the background, and use these simple equations to evaluate the
evolution of the quantum linear perturbations on it. Indeed, such results were
applied to quantum bouncing backgrounds, and spectral indices for tensor and
scalar perturbations were calculated in Refs. [6, 7].
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The matter content used in these papers were assumed to be either a single
perfect fluid or a single scalar field. In the case of perfect fluids, the equations
were simplified up to their simplest possible form, both for tensor and scalar
perturbations. For the case of scalar fields, this simplest form was achieved for
tensor perturbations but not for scalar perturbations. One ended in a interme-
diate stage that needed further simplifications in order to be applied to quantum
backgrounds Refs. [4, 2].

Meanwhile, a non-singular inflationary model was found Ref. [9] containing
a single scalar field without potential term, which starts at infinity past from
flat space-time with Planckian size spacelike hypersurfaces, and inflates, due
to a quantum cosmological effect, until it makes an analytical graceful exit
from this inflationary epoch to a decelerated classical stiff matter expansion
phase. It should be interesting to investigate if this model could generate an
almost scale invariant spectrum of scalar perturbations, as observed Ref. [8].
However, without simple equations governing the evolution of the perturbations,
the investigation becomes rather cumbersome.

The aim of this paper is twofold: complete the simplification initiated in
Refs. [4, 2], and apply it to the background described in Ref. [9]. In fact,
after performing some canonical transformations at the classical level, and uni-
tary transformations at the quantum level, we were able to obtain the simple
equations for linear scalar perturbations of Ref. [1] for the case of scalar fields
without potential, without ever using any classical background equation. These
perturbation equations were then used to calculate the spectrum index ns of the
background model of Ref. [9] yielding ns = 3, incompatible with observations
[8] (ns ≈ 1). Hence, even though the quantum background model has some
attractive features, the model should be discarded.

The paper is organized as follows: in the next section, we briefly summarize
the results of Ref. [9]. In section III, the simplification of the second order hamil-
tonian for the scalar perturbations is implemented, and the full quantization of
the system, background and perturbations, is performed. The quantum back-
ground trajectories are then used to induce a time evolution for the Heisenberg
operators describing the perturbations, yielding simple dynamical equations for
the quantum perturbations. In Section IV, we calculate the spectral index of
scalar perturbations in the background presented in Section II, using the equa-
tions obtained in Section III. Section V presents our conclusions.

C.2. Bohm-de Broglie interpretation of a quantum

non-singular inflationary background model

In this section, we first briefly highlight the main characteristics of the Bohm-
de Broglie quantisation scheme, restricting our discussion to the homogeneous
minisuperspace models which have a finite number of degrees of freedom. We
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then apply it to the quantisation of the background geometry with a massless
scalar field without potential term.
The Wheeler-DeWitt equation of a minisuperspace model is obtained through

the Dirac quantization procedure, where the wave function must be annihilated
by the operator version of the Hamiltonian constraint

H(p̂µ, q̂µ)Ψ(q) = 0 . (C.1)

The quantities p̂µ, q̂µ are the phase space operators related to the homogeneous
degrees of freedom of the model. Usually this equation can be written as

−1
2
fρσ(qµ)

∂Ψ(q)

∂qρ∂qσ
+ U(qµ)Ψ(q) = 0 , (C.2)

where fρσ(qµ) is the minisuperspace DeWitt metric of the model, whose inverse
is denoted by f ρσ(qµ).
Writing Ψ in polar form, Ψ = R exp(iS), and substituting it into (C.2), we

obtain the following equations:

1

2
fρσ(qµ)

∂S

∂qρ

∂S

∂qσ
+ U(qµ) +Q(qµ) = 0 , (C.3)

fρσ(qµ)
∂

∂qρ

(
R2 ∂S

∂qσ

)
= 0 , (C.4)

where

Q(qµ) ≡ −
1

2R
fρσ

∂2R

∂qρ∂qσ
(C.5)

is called the quantum potential.
The Bohm -de Broglie interpretation applied to quantum cosmology states

that the trajectories qµ(t) are real, independently of any observations. Equation
(C.3) represents their Hamilton-Jacobi equation, which is the classical one added
with a quantum potential term Eq. (C.5) responsible for the quantum effects.
This suggests to define

pρ =
∂S

∂qρ
, (C.6)

where the momenta are related to the velocities in the usual way:

pρ = f ρσ
1

N

∂qσ
∂t

. (C.7)

To obtain the quantum trajectories we have to solve the following system of
first order differential equations, called the guidance relations:

∂S(qρ)

∂qρ
= f ρσ

1

N
q̇σ . (C.8)
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Eqs. (C.8) are invariant under time reparametrization. Hence, even at the
quantum level, different choices of N(t) yield the same space-time geometry for
a given non-classical solution qα(t). There is no problem of time in the Bohm-de
Broglie interpretation of minisuperspace quantum cosmology Ref. [10]. We will
return to this point in the next section.
We now apply this interpretation to the situation where H in Eq. (C.1) is

given by

H
(0)
0 =

√
2V

2ℓP le3α
(
−P 2

α + P 2
ϕ

)
, (C.9)

which was worked out in Ref. [9]. The variables are dimensionless with ϕ de-
scribing the scalar field degree of freedom and α associated to the scale factor
through α ≡ log(a). The main feature of this model is the possibility to obtain
a non-singular inflationary model similar to the pre-big bang model Refs. [21]-
[24], with a minimum volume spatial section in the infinity past, or the emergent
model Ref. [150] for flat spatial sections, without any graceful exit problem.

We take as solution of the backgroundWheeler-DeWitt equation, Ĥ
(0)
0 Ψ(a, ϕ) =

0, a gaussian superposition of WKB solutions. The resulting wave function is
(see Ref. [9] for details)

Ψ(α, ϕ) = 2
√
π|h|

[
exp i

(
−h
2
(α + ϕ)2 + d (α + ϕ) +

π

4

)

+exp i

(
−h
2
(α− ϕ)2 + d (α− ϕ) + π

4

)]
, (C.10)

where h and d are two positive free parameters associated to the variance and
the displacement of the gaussian superposition, respectively.
The norm of the wave-function is given by R = 4

√
π|h| cos[ϕ(hα−d)], yielding

the quantum potential, Eq. (C.5),

Q = (hα− d)2 − h2ϕ2 . (C.11)

The guidance relations, given by Eq. (C.8) with the choice N = ℓPl√
2V
e3α,

reduce to

α̇ = −∂S
∂α

,

ϕ̇ =
∂S

∂ϕ
, (C.12)

yielding

α̇ = hα− d ,

ϕ̇ = −hϕ , (C.13)

which can be directly integrated to give

a = eα = ed/h exp(α0e
ht) and ϕ = α0e

−ht , (C.14)
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where α0 is an integration constant. Recall that the time parameter t is related
to cosmic time τ through τ =

∫
dte3α(t) ⇒ τ − τ0 = Ei(3α0e

ht)/h, where Ei(x)
is the exponential-integral function.
These solutions represent ever expanding non-singular models (see figure).

For t << 0 the Universe expands accelerately from its minimum size a0 = ed/h

(remember that for the physical scale factor one has aphys0 = ℓPl√
2V
ed/h), which

occurs in the infinity past t→ −∞. The scalar field is very large in that phase.
If |ht| ≤ α0 is not very large, one has

a ≈ eα0+d/h[1 + α0ht + (1 + 1/α0)(α0ht)
2/2! + (1 + 3/α0 + 1/α2

0)(α0ht)
3/3!...].
(C.15)

Taking α0 >> 1, one can write a ≈ eα0+d/h exp(α0ht). In that case, from
τ =

∫
dta3(t), one obtains that a ∝ (τ − τ0)

1/3 and ϕ ∝ ln (τ − τ0), as in
the classical regime. Figure 1 exhibits the bohmian trajectories and quantum
potential for the parameters h = 3/5, d = 2, and α0 = 2.

C.3. Simplification of the second order hamiltonian

and canonical quantisation

The conventional approach to deal with quantum cosmological perturbations
is to consider a semi-classical treatment that quantise only the first order per-
turbations while the background is treated classically. Once the background
dynamics has a classical evolution, one can use these equations to significantly
simplify the second order lagrangian before quantising the system Ref. [1]. In
this case, the background evolution induces a potential term that modifies the
quantum dynamics of the perturbations.
One step further is to consider quantum corrections to the background evolu-

tion itself, as in minisuperspace models, Ref. [11]-[14]. In this case, the sim-
plifications in the equations for the linear perturbations using the classical
background cannot be implemented. It is worth to remind that the original
lagrangian is quite involved, and the use of the background equation is a key
step to rewrite the system in a treatable form.
Recent works using technics for hamiltonian’s systems Refs. [3, 4, 5] showed

that it is also possible to simplify the full hamiltonian system by a series of
canonical transformations. Their main results focus in the scalar and tensor
perturbations considering the matter content of the Universe described by a
perfect fluid. Even though in Ref. [2] and in the Appendix A of Ref. [4] it
is shown a long development that significantly simplifies the hamiltonian for a
scalar field with a generic potential U(ϕ), there were still some delicate issues
to be addressed to consistently quantise the scalar field case.
We will not reproduce the development made in these references but we will

continue the development of the above mentioned Appendix. The main point
to acquaint from this reference is that their simplification procedure use only
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canonical transformations, that guarantees the equivalence between the original
and the simplified hamiltonians, independently of the background equations of
motion.
In the present work we will focus in the case of a vanishing potential U(ϕ)

and show how it is possible to consistently quantise simultaneously both the
background and the perturbations. The background system is composed of
a free massless scalar field in a spatially flat Friedmann-Lemâıtre-Robertson-
Walker metric (FLRW). Since we are only interested in scalar perturbations,
the perturbed metric can be written as

ds2 = N2(1 + 2φ)dt2 −NaB|idtdx
i +

−a2
[
(1 + 2ψ)δij − 2E|i|j

]
dxidxj . (C.16)

The matter content is defined by a free massless scalar field ϕ (t, x) = ϕ0 (t) +
δϕ (t, x), where ϕ0 is the background homogeneous scalar field. Using these
definitions in the lagrangian density for the scalar field, namely Lm = 1

2
ϕ;µϕ

;µ,
we find

Lm =
(1− 2φ)

N2

(
ϕ̇2
0

2
+ ϕ̇δϕ̇

)
+
ϕ̇2
0

N2

(
2φ2 − B|iB|i

2

)
+

− ϕ̇0

Na
B|iδϕ|i +

δϕ̇2

2N2
− 1

2a2
δϕ|iδϕ|i . (C.17)

As our starting point, let us consider the hamiltonian (A39) of Ref. [4] with
the scalar field potential U(ϕ) taken to be null,

H = NH0 +

∫
d3x

(
−ℓ

2
P lP

2
a

2a2V
φ+

3P 2
ϕ

a4PaV
ψ+

+
3ℓ2P lPϕ
2a4V

v

)
φ̃6 + ΛNPN +

∫
d3xΛφπφ , (C.18)

where φ̃6 = πψ, PN e πφ are first class constrains, and v is the Mukhanov-Sasaki
variable. The quantity H0 is defined as

H0 = −ℓ
2
P lP

2
a

4aV
+

P 2
ϕ

2a3V
+

1

2a

∫
d3x

(
π2

√
γ
+
√
γv,iv,i

)
+

+

[
15ℓ2P lP

2
ϕ

4a5V 2
− ℓ4P lP

2
a

16a3V 2
− 27P 4

ϕ

4a7V 2P 2
a

] ∫
d3x
√
γv2 , (C.19)

where Pa, Pϕ and π are the momenta canonically conjugate to a, ϕ0 and v,
respectively, ℓ2P l =

8πG
3
, and V is the comoving volume of the compact spatial

sections, i.e. V <∞. The zero order hamiltonian,

H
(0)
0 ≡ −

ℓ2P lP
2
a

4aV
+

P 2
ϕ

2a3V
, (C.20)
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can be used to simplify further the mass-like term for the perturbations, i.e. the
function inside brackets multiplying the v2 term. To do so, we rewrite Pϕ as

P 2
ϕ = 2a3V

(
H

(0)
0 +

ℓ2P lP
2
a

4aV

)
.

Redefining the lapse function as

Ñ = N

{
1 +

[
15ℓ2P l
2a2V

− 27

aP 2
a

(
H

(0)
0 +

ℓ2P lP
2
a

2aV

)]∫
d3x
√
γv2
}
,

and keeping only second order terms in NH0, we can rewrite it as

NH0 = Ñ

[
H

(0)
0 +

1

2a

∫
d3x

(
π2

√
γ
+
√
γv,iv,i

)
+

ℓ4P lP
2
a

8a3V 2

∫
d3x
√
γv2
]
+O(v4, v2π2) . (C.21)

Thus, by a simple redefinition of the lapse function, the mass-like term sim-
plifies significantly. Nonetheless, it is still tricky to quantise this term due to the
momentum Pa. Furthermore, the scale factor is defined on the half-line which
requires additional care in specifying the Hilbert space. To deal with these two
points, it is convenient to define dimensionless variables α ≡ log (

√
2V ℓ−1

P l a) and
ϕ→ ℓPl√

2
ϕ which give us the following relations:

Pα = − ℓP l√
2V

e3α

N
α̇ ,

ℓ2P l
4V

P 2
a

a
=

√
2V

ℓP l

P 2
α

2e3α
,

P 2
ϕ

2a3V
→
√
2V

ℓP l

P 2
ϕ

2e3α
, H

(0)
0 =

√
2V

2ℓP le3α
(
−P 2

α + P 2
ϕ

)
.

With these new variables we find,

H0 = H
(0)
0 +

N
√
2V

2ℓP leα

∫
d3x
√
γ

(
π2

γ
+ v,iv,i +

P 2
α

e4α
v2
)
.

To eliminate the momentum in the mass-like term we perform a canonical
transformation generated by

F = I + Pα
2

∫
d3x
√
γ ṽ2 + eα̃

∫
d3x πṽ , (C.22)

which implies

α = α̃ +
1

2

∫
d3x
√
γ ṽ2 , v = eα̃ṽ ,

P̃α = Pα + eα̃
∫

d3x πṽ , π̃ =
√
γP̃αṽ + eα̃π ,

e3α = e3α̃
(
1 +

3

2

∫
d3x
√
γ ṽ2

)
+O

(
ṽ3
)

.
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Once more, redefining the lapse function as

Ñ = N

[
1− 3

2

∫
d3x
√
γṽ2
]

,

and omitting the tilde in the new variables, the hamiltonian transforms into

H = H0 +

∫
d3x

(
−2V
ℓ2P l

P 2
α

e4α
φ+

3
√
2V

ℓP l

P 2
ϕ

e3αPα
ψ+

+
3
√
2V

ℓP l

√
V Pϕ
e4α

v

)
πψ + ΛNPN +

∫
d3xΛφπφ (C.23)

with,

H0 =

√
2V

2ℓP le3α

[
−P 2

α + P 2
ϕ +

∫
d3x

(
π2

√
γ
+
√
γe4αv,iv,i

)]
. (C.24)

The system described by this hamiltonian can be immediately quantised.
The Dirac’s quantisation procedure for constrained hamiltonian systems requires
that the first class constraints must annihilate the wave-function

∂

∂N
Ψ (α, ϕ, v,N, φ, ψ) = 0 ,

δ

δψ
Ψ (α, ϕ, v,N, φ, ψ) = 0 ,

δ

δφ
Ψ (α, ϕ, v,N, φ, ψ) = 0 .

Thus, the wave-function must be independent of N, φ and ψ, i.e. Ψ =
Ψ (α, ϕ, v) where v encode the perturbed degrees of freedom. Note that, due to
the transformation (C.22), v is now the Mukhanov-Sasaki variable divided by
a. The remaining equation is

Ĥ0Ψ (α, ϕ, v) = 0 , (C.25)

which has only quadratic terms in the momenta.
A well known feature of the quantization of time reparametrization invariant

theories is that the state is not explicitly time dependent, hence one should find
among intrinsic degrees of freedom a variable that can play the role of time. In
the perfect fluid case, the Wheeler- DeWitt’s equation assumes a Schrödinger-
like form, due to a linear term in the momenta connected with the fluid degree
of freedom. However, the hamiltonian (C.24) does not possess such linear term,
rendering ambiguous the choice of an intrinsic time variable. Notwithstanding,
we still can define an evolutionary time for the perturbations if we use the
Bohm-de Broglie interpretation. The procedure is similar to what is done in a
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semiclassical approach, where a time evolution for the quantum perturbations is
induced from the classical background trajectory (see, e.g., Ref. [16] for details).
Let us summarize it in the following paragraphs.
First of all, take the hamiltonian NH0, with H0 given in Eq. (C.24) satisfying

the hamiltonian constraint H0 ≈ 0, and let us solve it classically using the
Hamilton-Jacobi theory. The respective Hamilton-Jacobi equation reads

−1
2

(
∂ST
∂α

)2

+
1

2

(
∂ST
∂ϕ

)2

+
1

2

∫
d3x

[
1√
γ

(
δST
δv

)2

+
√
γe4αv,iv,i

]
, (C.26)

where the classical trajectories can be obtained from a solution ST of Eq. (C.26)
through

α̇ = −Pα = −∂ST
∂α

,

ϕ̇ = Pϕ =
∂ST
∂ϕ

,

v̇ =
1√
γ
π =

1√
γ

δST
δv

, (C.27)

where we have chosen N = lP le
3α/
√
2V , and hence a time parameter t (a dot

means derivative with respect to this parameter), related to conformal time
through dt ∝ a2dη.
We will now use the fact that the v variable is a small perturbation over the

background variables α and ϕ, and that its back-reaction in the dynamics of
the background is negligible. In this case, one can write ST (α, ϕ, v) as

ST (α, ϕ, v) = S0(α, ϕ) + S2(α, ϕ, v), (C.28)

where it is assumed that S2(α, ϕ, v) cannot be splitted again into a sum in-
volving a function of the background variables alone (which would just impose
a redefinition of S0). Noting that, in order to be a solution of the Hamilton-
Jacobi equation (C.26), S2 must be at least a second order functional of v (see
Ref. [27]), then S2 << S0 as well as their partial derivatives with respect to the
background variables. Hence one obtains for the background that

α̇ ≈ −∂S0

∂α
,

ϕ̇ ≈ ∂S0

∂ϕ
. (C.29)

Inserting the splitting given in equation (C.28) into equation (C.26), one
obtains, order by order:

−1
2

(
∂S0

∂α

)2

+
1

2

(
∂S0

∂ϕ

)2

= 0, (C.30)
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−
(
∂S0

∂α

)(
∂S2

∂α

)
+

(
∂S0

∂ϕ

)(
∂S2

∂ϕ

)
+
1

2

∫
d3x

[
1√
γ

(
δS2

δv

)2

+
√
γe4αv,iv,i

]
= 0,

(C.31)

−1
2

(
∂S2

∂α

)2

+
1

2

(
∂S2

∂ϕ

)2

+O(4) = 0. (C.32)

In Eq. (C.32), the symbol O(4) represents terms coming from high order cor-
rections to the hamiltonian (C.24). As we are interested only on linear per-
turbations, this equation will not be relevant. The first equation (C.30) is the
Hamilton-Jacobi equation of the background which solution yields, together
with Eqs. (C.29), the background classical trajectories. Once one obtains the
classical trajectories α(t), ϕ(t), the functional S2(α, ϕ, v) becomes a functional of
v and a function of t, S2(α, ϕ, v)→ S2(α(t), ϕ(t), v) = S̄2(t, v). Hence equation
(C.31), using Eqs. (C.29), can be written as

∂S2

∂t
+

1

2

∫
d3x

(
1√
γ

(
δS2

δv

)2

+
√
γe4α(t)v,iv,i

)
= 0. (C.33)

Equation (C.33) can now be understood as the Hamilton-Jacobi equation
coming from the hamiltonian

H2 =
1

2

∫
d3x

(
π2

√
γ
+
√
γe4α(t)v,iv,i

)
, (C.34)

which is the generator of time t translations (and not anymore constrained to
be null).

If one wants to quantize the perturbations, the correspoding Schrödinger
equation should be

i
∂χ

∂t
= Ĥ2χ , (C.35)

where χ is a wave functional depending on v and t, and the dependences of Ĥ2

on the background variables are understood as a dependence on t.

Let us now go one step further and quantize both the background and per-
turbations. When the background is also quantised, this procedure can also be
implemented in the framework of the Bohm-de Broglie interpretation of quan-
tum theory, where there is a definite notion of trajectories as well, the bohmian
trajectories. In order to do that, we first note that Eqs. (C.25) and (C.24)
imply that

(Ĥ
(0)
0 + Ĥ2)Ψ = 0, (C.36)
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where

Ĥ
(0)
0 = − P̂

2
α

2
+
P̂ 2
ϕ

2
, (C.37)

Ĥ2 =
1

2

∫
d3x

(
π̂2

√
γ
+
√
γe4α̂v̂,iv̂,i

)
. (C.38)

We write the wave functional Ψ as Ψ = exp(AT + iST ) ≡ RT exp(iST ), where
both AT and ST are real functionals. Inserting it in the Wheeler-DeWitt equa-
tion (C.36), the two real equations we obtain are

− ∂

∂α

(
R2
T

∂ST
∂α

)
+

∂

∂ϕ

(
R2
T

∂ST
∂ϕ

)
+

∫
d3x√
γ

δ

δv

(
R2
T

δST
δv

)
= 0 , (C.39)

−1
2

(
∂ST
∂α

)2

+
1

2

(
∂ST
∂ϕ

)2

+
1

2

∫
d3x

(
1√
γ

(
δST
δv

)2

+
√
γe4αv,iv,i

)
+

1

2RT

(
∂2RT

∂α2
− ∂2RT

∂ϕ2

)
−1
2

∫

(C.40)
These two equations correspond to equations (C.4) and (C.5), respectively.
The bohmian guidance relations are the same as in the classical case,

α̇ = −Pα = −∂ST
∂α

,

ϕ̇ = Pϕ =
∂ST
∂ϕ

,

v̇ =
1√
γ
π =

1√
γ

δST
δv

, (C.41)

with the difference that the new ST satisfies a Hamilton-Jacobi equation different
from the classical one due to the presence of the quantum potential terms (the
two last terms in Eq. (C.40)), which are responsible for the quantum effects.
We have again made the choice N ∝ e3α. Whether this procedure is unam-

biguously independent on the choice of the lapse function is a delicate point.
Indeed, in a general framework (the full superspace), the bohmian evolution
of three-geometries may not even form a four-geometry (a spacetime) in the
sense described in Refs. [17, 18, 19, 20], although the theory remains consistent
(Refs. [18, 19]), and its geometrical properties depends on the choice of the
lapse function. However, in the case of homogeneous spacelike hypersurfaces, a
preferred foliation of spacetime is selected, the one where the time direction is
perpendicular to the Killing vectors of these hypersurfaces. In this case, once
one has chosen this preferred foliation, one can prove that the residual ambi-
guity in the lapse function (which is now independent of space coordinates) is
geometrically irrelevant for the Bohmian trajectories (see Ref. [10]). This is also
true when linear perturbations are present, where the hamiltonian constraints

1995



reduce to a single one, and the super-momentum constraint can be solved, as it
was shown in Ref. [7]. Again, the lapse function is just a time function. In this
case, the bohmian quantum background trajectories can be obtained without
geometrical ambiguities [10], and they can be used to induce a time dependence
on the perturbation quantum state, as we will see.
Let us assume, as in the classical case, that we can split AT (α, ϕ, v) =

A0(α, ϕ) + A2(α, ϕ, v) implying that RT (α, ϕ, v) = R0(α, ϕ)R2(α, ϕ, v), and
ST (α, ϕ, v) = S0(α, ϕ) + S2(α, ϕ, v), and that A2 << A0, S2 << S0, together
with their derivatives with respect to the background variables. The approxi-
mate guidance relations are

α̇ ≈ −∂S0

∂α
,

ϕ̇ ≈ ∂S0

∂ϕ
, (C.42)

and the zeroth order terms of Eqs. (C.39) and (C.40) read

− ∂

∂α

(
R2

0

∂S0

∂α

)
+

∂

∂ϕ

(
R2

0

∂S0

∂ϕ

)
≈ 0 , (C.43)

−1
2

(
∂S0

∂α

)2

+
1

2

(
∂S0

∂ϕ

)2

+
1

2R0

(
∂2R0

∂α2
− ∂2R0

∂ϕ2

)
≈ 0 . (C.44)

which, again, correspond to Eqs. (C.4) and (C.5) for the background, respec-
tively.
A solution (S0, R0) of Eqs. (C.43) and (C.44) yield a bohmian quantum

trajectory for the background through Eq. (C.42). If S0 and R0 are obtained
from Eq. (C.10), then the bohmian trajectories will be given by Eq. (C.14).
As in the classical case, once one obtains the bohmian quantum trajecto-

ries α(t), ϕ(t), the functionals S2(α, ϕ, v), A2(α, ϕ, v) become functionals of v
and functions of t, S2(α, ϕ, v) → S2(α(t), ϕ(t), v) = S̄2(t, v), A2(α, ϕ, v) →
A2(α(t), ϕ(t), v) = Ā2(t, v).
Defining χ(α, ϕ, v) ≡ R2(α, ϕ, v) exp(iS2(α, ϕ, v)), writing it as

χ(α, ϕ, v) =

∫
dλG(λ, v)F (λ, α, φ) , (C.45)

where F satifies

1

2

(
∂2F

∂α2
− ∂2F

∂ϕ2

)
+

1

R0

(
∂R0

∂α

∂F

∂α
− ∂R0

∂ϕ

∂F

∂ϕ

)
= 0 , (C.46)

and G is an arbitrary functional of v, which also depends on an integration
constant λ, then the next-to-leading-order terms of Eqs. (C.39) and (C.40) read

∂R̄2
2

∂t
+

∫
d3x√
γ

δ

δv

(
R̄2

2

δS̄2

δv
d3x

)
= 0 , (C.47)
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∂S̄2

∂t
+

1

2

∫
d3x

(
1√
γ

(
δS̄2

δv

)2

+
√
γe4α(t)v,iv,i

)
− 1

2

∫
d3x

R̄2
√
γ

δ2R̄2

δv2
= 0 ,

(C.48)
where R̄2(t, v) ≡ exp(Ā2(t, v)). In order to obtain these equations we used that

−
(
∂S0

∂α

)(
∂S2

∂α

)
+

(
∂S0

∂ϕ

)(
∂S2

∂ϕ

)
=
∂S̄2

∂t
, (C.49)

and the same for R2 and R̄2.
These two equations can be grouped into a single Schrödinger equation

i
∂χ̄

∂t
= Ĥ2χ̄ , (C.50)

where χ̄(t, v) = χ(α(t), ϕ(t), v) is a wave functional depending on v and t, and,
as before, the dependences of Ĥ2 on the background variables are understood
as a dependence on t.
For the specific example of section II, Eq. (C.10), one possible solution of

Eq.(C.46) yields for χ through Eq.(C.45)

χ(α, ϕ, v) =
1

R(α, ϕ)

∫
dλG(λ, v) exp

{
(α + ϕ− d/h)2

2λ
+
λh2(α− ϕ− d/h)2

8

}
.

(C.51)
From solution (C.51), we can construct χ̄(t, v) ≡ χ(α(t), ϕ(t), v) solution of Eq.
(C.50). Note that, as G is an arbitrary functional of v and the real parameter
λ, the functional χ̄(t, v) constructed from (C.51) via χ̄(t, v) ≡ χ(α(t), ϕ(t), v) is
also an arbitrary functional of t and v (even though χ(α, ϕ, v) in (C.51) is not
arbitrary in α and ϕ).
During our procedure, we have supposed that the evolution of the background

is independent of the perturbations. This no back-reaction assumption is based
on the fact that terms induced by the linear perturbations in the zeroth order
hamiltonian are negligible, which should be the case when one assumes that
quantum perturbations are initially in a vacuum quantum state, as it is argued
in Ref. [15]. We will come back to this point in the conclusion.
Once one obtains the quantum trajectories for the background variables, they

can be used to define a time dependent unitary transformation for the pertur-
bative sector. This unitary transformation takes the vector |χ〉 into |ξ〉 = U |χ〉,
i.e. |χ〉 = U−1|ξ〉. With respect to this transformation the hamiltonian is taken
into Ĥ2 −→ Ĥ2U with

i
d

dt
|ξ〉 = Ĥ2U |ξ〉 =

(
UĤ2U

−1 − iU d

dt
U−1

)
|ξ〉 . (C.52)

Let us define this unitary transformation by

U = eiAe−iB (C.53)
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with,

A =
1

2

∫
d3x
√
γ
ȧ

a3
v̂2 , (C.54)

B =
1

2

∫
d3x (π̂v̂ + v̂π̂) log(a) . (C.55)

Remember that the time derivative, ȧ = da
dt
, is taken with respect to the

parametric time t related to the cosmic time τ by dτ = Ndt ∝ a3dt. In these
expressions, the scale factor a = a(t) should be understood as a function of
time, instead of an operator, since we suppose that the background quantum
equations have already been solved. Thus, a = a(t) should be taken as the

bohmian trajectory associated with equations Ĥ
(0)
0 |φ〉 = 0.

Naturally, the π̂ e v̂ operators do not commute with the unitary transforma-
tion. Using the following relations

eiA v̂ e−iA = v̂ , eiA π̂ e−iA = π̂ − ȧ

a3
√
γ v̂

e−iB v̂ eiB = a−1 v̂ , e−iB π̂ eiB = aπ̂ .

we can calculate the transformed hamiltonian as

Ĥ2U =
a2

2

∫
d3x

[
π̂2

√
γ
+
√
γ v̂,iv̂,i −

(
ä

a5
− 2

ȧ2

a6

)√
γ v̂2

]
(C.56)

Note that the unitary transformation U takes us back to the Mukhanov-Sasaki
variable.
Recalling that dt = a−2dη, where η is the conformal time, we have ȧ = a2a′

and ä = a4a′′ + 2a3a′2, and the hamiltonian can be recast as

Ĥ2U =
a2

2

∫
d3x

[
π̂2

√
γ
+
√
γ v̂,iv̂,i −

a′′

a

√
γ v̂2

]
. (C.57)

So far our analysis has been made in the Schrödinger picture but now it is
convenient to describe the dynamics using the Heisenberg representation. The
equations of motion for the Heisenberg operators are written as

˙̂v = −i
[
v̂, Ĥ2U

]
= a2

π̂√
γ

,

˙̂π = −i
[
π̂, Ĥ2U

]
= a2
√
γ

(
v̂,i,i +

a′′

a
v̂

)
.

Combining these two equations and changing to conformal time, we find the
following equations for the operator modes of wave number k, vk:

v′′k +

(
k2 − a′′

a

)
vk = 0 . (C.58)
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This is the same equation of motion for the perturbations known in the liter-
ature in the absence of a scalar field potential Ref. [1]. The crucial point is that
we have not used the background equations of motion. Thus we have shown
that Eq. (C.58) is well defined, independently of the background dynamics, and
it is correct even if we consider quantum background trajectories.
Note, however, that this result was obtained using a specific subclass of wave

functionals which satisfies the extra condition Eq. (C.46). What are the physical
assumptions behind this choice?
When one approaches the classical limit, where R0 is a slowly varying function

of α and ϕ, condition (C.46) reduces to

∂2F

∂α2
− ∂2F

∂ϕ2
≈ 0 . (C.59)

If Eq. (C.59) were not satisfied, one would not obtain anymore the usual
Schrödinger equation for quantum perturbations in a classical background (which
arises when R0 is a slowly varying function of α and ϕ), due to extra terms in
Eqs. (C.47) and (C.48): there would be corrections originated from some quan-
tum entanglement between the background and the perturbations, even when
the background is already classical, which would spoil the usual semiclassical
approximation. This could be a viable possibility driven by a different type of
wave functional than the one considered here, but it seems that our Universe
is not so complicated. In fact, the observation that the simple semiclassical
model without this sort of entaglement works well in the real Universe indicates
something about the wave functional of the Universe[28]1. In other words, the
validity of the usual semiclassical approximation imposes Eq. (C.59).
When R0 is not slowly varying and quantum effects on the background become

important causing the bounce, the two last terms of condition (C.46) cannot
be neglected. They would also induce extra terms in Eqs. (C.47) and (C.48),
again originated from some quantum entanglement between the background and
the perturbations, but now in the background quantum domain, and the final
quantum equation (C.58) for the perturbations we obtained would not be valid
around the bounce. In this case, there is no observation indicating which class
of wave functionals one should take and our choice in this no man’s land resides
only on assumptions of simplicity: there is no quantum entaglement between
the background and the perturbations in the entire history of the Universe.
This is the physical hypothesis behind the choice of the specific class os wave
functionals satisfying condition (C.46).
In the next section we will apply the above formalism implying Eq. (C.58) to

the specific example described in section II.

1In these references, it is pointed out how the features of our Universe we take for granted
(classicality, separability) impose severe restrictions on the initial wave function of the
Universe. In fact, our Universe could have been highly nonclassical, completely entagled,
even when it is large, depending on the features of this initial wave solution.
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C.4. Application of the formalism

We will now use Eq. (C.58) to evaluate the spectral index of scalar perturbations
in the quantum background described by Eq. (C.14). The potential V ≡ a′′/a
reads

V ≡ a′′

a
=

1

a4

[
ä

a
−
(
ȧ

a

)2]

=
α0h

2 exp(ht)[1− α0 exp(ht)]

a4
. (C.60)

Defining uk ≡ vk/a, Eq. (C.58) in terms of the t variable can be written as
(from now on we will omit the index k),

ü+ k2a4u = 0 . (C.61)

When ht << 0, we can approximate a ≈ exp(d/h)[1 + α0 exp(ht)], and the
general solution reads

u = A+(k)Jν(z)− A−(k)J−ν(z) , (C.62)

where J is the Bessel function of the first type, ν = i2k exp(2d/h)/h and z =

4α
1/2
0 k exp(2d/h+ht/2)/h. At t→ −∞, when the scale factor becomes constant

and spacetime is flat, one can impose vacuum initial conditions

vini =
eikη√
k
, , (C.63)

which implies that A+(k) = 0, and A−(k) ∝ k−1/2 exp[i2k ln(k) exp(2d/h)/h].
Hence, v in this region reads

vI = aA−(k)J−ν(z) . (C.64)

The solution can also be expanded in powers of k2 according to the formal
solution (see Ref. [1])

v

a
≃ A1(k)

[
1− k2

∫ t dη̄

a2 (η̄)

∫ η̄

a2 (¯̄η) d¯̄η

]

+ A2(k)

[∫ η dη̄

a2
− k2

∫ η dη̄

a2

∫ η̄

a2d¯̄η

∫ ¯̄η d¯̄̄η

a2

]
+ ...,

(C.65)

When the mode is deep inside the potential, k2 << V , we can neglect the k2

terms yielding

vII ≈ a

[
A1(k) + A2(k)

∫ η dη̄

a2

]
= a

[
A1(k) + A2(k)t

]
. (C.66)
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We can now perform the matching of vI with vII in order to calculate A1(k)
and A2(k). As we are interested on large scales, k << 1, this matching can
still be made when ht << 0. In this region one has V ≈ α0h

2 exp(ht − 4d/h),
yielding the matching time

htM = ln

(
k2 exp(4d/h)

α0h2

)
. (C.67)

Note that the potential crossing condition relating the wave number k and the
time tM of the crossing is logarithmic. In fact, since in this region the scale
factor is almost constant, the wave number is also logarithmically related to
the conformal time. This dependence is drastically different from the slow roll
scenario, where the conformal time of potential crossing is inversely proportional
to the wave number, k ∝ 1/ηM .
Performing the matching at this time and taking the leading order term in k,

one obtains that

A1(k) = k−1A2(k) ∝ k−1/2 exp[i6k ln(k) exp(2d/h)/h]. (C.68)

Note that solution (C.65) is valid everywhere, hence we can use it in the
period when the scale factor evolution becomes classical. During this period,
unless for some fine tuning, the mode is also deep inside the potential and one
can use Eq. (C.66) to calculate the Bardeen potential Φ through the classical
equation Ref. [1]

Φ = −(ǫ+ p)1/2z

k2

(
v

z

)′
, (C.69)

where z ≡ a2(ǫ+ p)1/2/H. For the case of a scalar field without potential (stiff
matter), z ∝ a, yielding

Φ ∝ A1(k) +
A2(k)

k2a4
, (C.70)

one constant and one decaying mode, as usual. The transition to radiation
dominated and matter dominated phases may alter the amplitudes but not the
spectrum. The power spectrum

PΦ ≡
2k3

π2
|Φ|2 ∝ knS

−1, (C.71)

yields for the spectral index, from the value of A1(k) in the constant mode given
in Eq. (C.68), the value ns = 3, contrary to observational results Ref. [8]. This
power law dependence was checked numerically as can be seen by the figure.
Hence, the model cannot describe the primordial era of our Universe.

C.5. Conclusion

In this paper we were able to obtain the simple equation for linear scalar per-
turbations of Ref. [1] for the case of a scalar field without potential. The simpli-
fication procedure was carried out without ever using any classical background
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equation. Instead, by a series of canonical transformations and redefinitions of
the lapse function we are able to put the hamiltonian in a form susceptible to
quantization.
However, contrary to the perfect fluid case, the scalar field minisuperspace

model has no natural way to define a time variable since its hamiltonian con-
straint does not contain a linear term in the momenta. Nevertheless, if one
assumes there is no back-reaction, we have shown how to bypass this problem
using the quantum background bohmian trajectories. The quantum background
dynamics in the Bohm-de Broglie interpretation naturally provides an evolution-
ary time to the perturbative sector, similarly to what is done at the semiclassical
level through the classical background trajectories [16].
These perturbation equations were then used to calculate the spectrum index

ns of the background model of Ref. [9] yielding ns = 3, incompatible with obser-
vations Ref. [8] (ns ≈ 1). This result is intimately related to the logarithmically
dependence of the wave number to the potential crossing time, see eq. (C.67).
As a consequence, the model should be discarded. This is an example of an
inflationary model without (almost) scale invariant scalar perturbations.
The no back-reaction hypothesis we have used was justified through the as-

sumption that the perturbations are in a quantum vacuum state initially [15].
One could verify the consistency of such hypothesis by checking whether the
perturbations calculated under this assumption never departs the linear regime
in the region where the background is influenced by quantum effects. This check
was done in other frameworks (see Ref. [7]), where self-consistency was verified.
This self-consistency check, however, was not implemented here because the
model studied in section IV does not present a scale invariant spectrum for
long-wavelength perturbations, and the model should be discarded without the
need of calculating the amplitude of perturbations.
We have also assumed that there is no quantum entanglement in such a way

that the background disturbs the quantum evolution of the perturbations. This
is a restriction on the possible wave functionals of the Universe, which should
then satisfy condition (C.46). It should be interesting to investigate situations
where entaglement is allowed when the background is in the quantum regime,
which would imply modifications of Eq. (C.58) at the bounce. In this case, con-
dition (C.46) reduces to condition (C.59) (no entaglement when the background
becomes classical).
Some future investigations should be to apply the formalism to bouncing mod-

els obtained in the framework of quantum cosmology with scalar fields without
potential described in Ref. [26] in order to evaluate their spectral index. We
will also study the possibility to generalize the simplification of the perturbation
equations obtained here to the case of scalar fields with an arbitrary potential
term.
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D. Large classical universes
emerging from quantum
cosmology: Nelson Pinto-Neto

D.1. abstract

It is generally believed that one cannot obtain a large Universe from quantum
cosmological models without an inflationary phase in the classical expanding
era because the typical size of the Universe after leaving the quantum regime
should be around the Planck length, and the standard decelerated classical ex-
pansion after that is not sufficient to enlarge the Universe in the time available.
For instance, in many quantum minisuperspace bouncing models studied in the
literature, solutions where the Universe leave the quantum regime in the ex-
panding phase with appropriate size have negligible probability amplitude with
respect to solutions leaving this regime around the Planck length. In this paper,
I present a general class of moving gaussian solutions of the Wheeler-DeWitt
equation where the velocity of the wave in minisuperspace along the scale fac-
tor axis, which is the new large parameter introduced in order to circumvent
the abovementioned problem, induces a large acceleration around the quantum
bounce, forcing the Universe to leave the quantum regime sufficiently big to
increase afterwards to the present size, without needing any classical inflation-
ary phase in between, and with reasonable relative probability amplitudes with
respect to models leaving the quantum regime around the Planck scale. Fur-
thermore, linear perturbations around this background model are free of any
transplanckian problem.

D.2. Introduction

The existence of an initial singularity [1] is one of the major drawbacks of classi-
cal cosmology. In spite of the fact that the standard cosmological model, based
in classical general relativity sourced by ordinary matter, has been successfully
tested until the nucleosynthesis era, the extrapolation of this model to higher
energies leads to a breakdown of the geometry in a finite cosmic time. It indi-
cates the failure of this conventional approach at high energies, which should be
complemented through the intervention of some new physics (presence of exotic
matter, modifications of general relativity through non-minimal couplings, non
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linear curvature terms in the lagrangian, quantum effects of the gravitational
field , etc), leading to a complete regular cosmological model.

In the framework of quantum cosmology in minisuperspace models, non sin-
gular bouncing models have been obtained1, where the bounce occurs due to
quantum effects in the background [6, 7, 111]. Some approaches have used an
ontological interpretation of quantum mechanics, the Bohm-de Broglie [9] one,
to interpret the results [7, 111] because, contrary to the standard Copenhagen
interpretation, this ontological interpretation does not need a classical domain
outside the quantized system to generate the physical facts out of potentiali-
ties (the facts are there ab initio), and hence it can be applied to the Universe
as a whole. Of course there are other alternative interpretations which can be
used in quantum cosmology, like the many worlds interpretation of quantum
mechanics [10], but I will not use them in this paper.

In the Bohm-de Broglie interpretation, quantum Bohmian trajectories, the
quantum evolution of the scale factor aq(t), can be defined through the relation
ȧ ∝ ∂S/∂a, where S is the phase of an exact wave solution Ψ(a, t) of the
Wheeler-DeWitt equation. It satisfies a modified Hamilton-Jacobi equation,
augmented with a quantum potential term derived from Ψ(a, t), and hence aq(t)
is not the classical trajectory: in the regions where the quantum effects cannot
be neglected, the quantum trajectory aq(t) performs a bounce which connect
two asymptotic classical regions where the quantum effects are negligible. One
then has in hands a definite function of time for the homogeneous and isotropic
background part of the Universe, even at the quantum level, which realizes a
soft transition from the contracting phase to the expanding one.

When studying the evolution of quantum cosmological perturbations on these
backgrounds, which was done in the series of papers [12, 13, 14, 15] for the case of
one perfect fluid with equation of state p = wρ, one arrives at the result that, in
order to obtain wavelength spectra and amplitudes compatible with CMB data,
one must have [15] |w| << 1 and w1/4L0 ≈ 102lpl, where L0 is the curvature
scale at the bounce and lpl is the Planck length. Hence this analysis shows
that the model is self consistent because observational constraints impose that
the curvature scale at the bounce must be at least a few orders of magnitude
greater than the Planck length, a region where one can trust the Wheeler-
DeWitt equation without been spoiled by high order quantum gravity effects.
Of course this model should be extended to include radiation. In Ref. [4] it
is shown that the requirement |w| << 1 is important only at the moment

1There are many other frameworks where bounces connecting the present expanding phase
with a preceding contracting one may occur [2, 3]. In this case, the Universe is eternal,
there is no beginning of time, nor horizons. The new features of these models introduce
a new picture, where the usual problems of initial conditions [4] (as, for instance, the
almost homogeneous beginning of the expanding phase might be explained through the
disipation of nonlinear inhomogeneities when the universe was very large and rarefied
in the asymptotic far past of the contracting phase) and the evolution of cosmological
perturbations [5] are viewed from a very different perspective.
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when the perturbation wavelength becomes greater than the curvature scale:
the fluid which dominates at the bounce is irrelevant for the spectral index (but
is important for the amplitude, as we will see in future publications).

However this scenario has a problem on the quantum background solution
itself: in order for the model describe the big Universe we live in, the scale
factor at the bounce a0 must be somewhat large, and the probability one can
obtain from the wave function of the model for the occurence of this value is
incredibly small (in some cases exp(−1089), as we will see later on). Hence, either
there is an inflationary phase after the bounce in order to enlarge the Universe
from a small a0 (which may lead to transplanckian problems [11] and non linear
inhomogeneities at the bounce because of the growth of linear perturbations in
the contracting phase if a0 is small), or one should rely very strongly on some
anthropic principle in a situation much worst than in the landscape scenario.

The aim of this paper is to overcome this difficulty by proposing some more
general wave solutions of the Wheeler-DeWitt equation which lead to realistic
bouncing scenarios with parameters with reasonable probabilities and without
any transplanckian problem. In Ref. [15], the wave function at the bounce was
chosen to be a static gaussian of the scale factor centered at a = 0. As we will
see, the ratio between the scale factor at the bounce a0 and the width of the
gaussian must be very large in order to yield the big Universe we live in, yielding
the very small probability of occurrence of these parameters I mentioned above.
However, if one generalizes the wave function to be a moving gaussian on the
a-axis with velocity u, there is a minimum value of this parameter from where
one can obtain a large Universe, with reasonable probability of occurrence, and
without any transplanckian problems. The parameter u induces a very large
acceleration around the bounce, leading to a sufficiently large scale factor when
the quantum regime is over.

This paper is organized as follows: in Section II I describe in detail the prob-
lem I want to solve. In Section III I present the generalized wave solutions
from which this problem can be circumvented. I conclude in Section IV with a
discussion of our results, their physical meanings, and prospects for future work.

D.3. Quantum bounce solutions from static initial

gaussians and their problems

The Hamiltonian constraint describing a cosmological model with flat homoge-
neous and isotropic closed spacelike hypersurfaces with comoving volume V = 1,
and a perfect fluid satisfying p = ωǫ, where ǫ is the perfect fluid energy density,
p is the pressure and ω is a constant, reads [12]

H0 ≡
PT
a3ω
− P 2

a

4a
, (D.1)
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where a is the scale factor, Pa its canonical momentum, and the conserved
quantity PT , the momentum canonically conjugated to the degree of freedom of
the fluid T [16], is associated with the constant appearing in the energy density
of the fluid through the relation ǫ = PT/a

3(1+w). All quantities are in Planck
unities. One can verify that the Hamiltonian H = NH0 generates the usual
Friedmann equations of the model.
The wave function Ψ(a, T ) satisfies the Wheeler-DeWitt equation H0Ψ = 0,

i
∂

∂T
Ψ(a, T ) =

a(3ω−1)/2

4

∂

∂a

[
a(3ω−1)/2 ∂

∂a

]
Ψ(a, T ), (D.2)

where I have chosen the factor ordering in a in order to yield a covariant
Schrödinger equation under field redefinitions. The fluid selects a prefered time
variable.
I change variables to

χ =
2

3
(1− ω)−1a3(1−ω)/2,

obtaining the simple equation

i
∂Ψ(χ, T )

∂T
=

1

4

∂2Ψ(χ, T )

∂χ2
. (D.3)

This is just the time reversed Schrödinger equation for a one dimensional free
particle constrained to the positive axis. As a and χ are positive, solutions
which have unitary evolution must satisfy the condition

(
Ψ⋆∂Ψ

∂χ
−Ψ

∂Ψ⋆

∂χ

)∣∣∣∣∣
χ=0

= 0 (D.4)

(see Ref. [111] for details). I can choose the initial normalized wave function

Ψ(init)(χ) =

(
8

T0π

)1/4

exp

(
−χ

2

T0

)
, (D.5)

where T0 is an arbitrary constant. The gaussian Ψ(init) satisfies condition (D.4),
and it gives the probability density for the value of χ at T = 0 with minimum
uncertainty.
Using the propagator procedure of Refs. [111], we obtain the wave solution

for all times in terms of a:

Ψ(a, T ) =

[
8T0

π (T 2 + T 2
0 )

]1/4
exp

[ −4T0a3(1−ω)
9(T 2 + T 2

0 )(1− ω)2
]
exp

{
−i
[

4Ta3(1−ω)

9(T 2 + T 2
0 )(1− ω)2

+
1

2
arctan

(
T0
T

(D.6)
Due to the chosen factor ordering, the probability density ρ(a, T ) has a non

trivial measure and it is given by ρ(a, T ) = a(1−3ω)/2R2, where R2 = |Ψ(a, T )|2.
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Its continuity equation, one of the equations coming from Eq. (D.2) after sub-
stitution of Ψ = ReiS in it, reads

∂ρ

∂T
− ∂

∂a

[
a(3ω−1)

2

∂S

∂a
ρ

]
= 0, (D.7)

which implies, in the Bohm interpretation [9], the definition of a velocity field

ȧ = −a
(3ω−1)

2

∂S

∂a
, (D.8)

in accordance with the classical relations ȧ = {a,H} = −a(3ω−1)Pa/2 and Pa =
∂S/∂a.
Note that S satisfies the other equation coming from (D.2),

∂S

∂T
− a(3ω−1)

4

(
∂S

∂a

)2

+
a(3ω−1)/2

4R

∂

∂a

[
a(3ω−1)/2 ∂R

∂a

]
= 0, (D.9)

which is a Hamilton-Jacobi-like equation with an extra quantum term, called
the quantum potential, given by

Q ≡ −a
(3ω−1)/2

4R

∂

∂a

[
a(3ω−1)/2 ∂R

∂a

]
. (D.10)

Hence, the trajectory (D.8) will not coincide with the classical trajectory when-
ever Q is comparable with the other terms present in Eq. (D.9) because S will
be different from the classical Hamilton-Jacobi function.
Inserting the phase of (D.6) into Eq. (D.8), I obtain the Bohmian quantum

trajectory for the scale factor:

a(T ) = a0

[
1 +

(
T

T0

)2
] 1

3(1−ω)

, (D.11)

or, in terms of χ(T ),

χ(T ) = χ0

[
1 +

(
T

T0

)2
] 1

2

. (D.12)

Note that χ0 is the value of χ at T = 0, the moment of the bounce, χ0 = χbounce,
and the scale factor at the bounce a0 is connected to χ0 through

a0 =

[
3

2
(1− ω)χ0

]2/[3(1−ω)]
. (D.13)

Solution (E.296) has no singularities and tends to the classical solution when
T → ±∞. Remember that I am in the gauge N = a3ω, and T is related to
conformal time through

NdT = adη =⇒ dη = [a(T )]3ω−1 dT. (D.14)
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The solution (E.296) can be obtained from other initial wave functions (see
Ref. [111]).
However, the above solution suffers from the following drawback: the curva-

ture scale at the bounce reads Lbounce ≡ T0a
3w
0 , and the quantity PT associated

in the classical limit |T | → ∞ with the constant appearing in the energy density
of the fluid through the relation ǫ = PT/a

3(1+w), can be obtained in the Bohmian
approach from the wave function through the relation PT = ∂S/∂T . It reads

PT =
∂S

∂T
=

T0
2(T 2 + T 2

0 )
− χ(T )2(T 2

0 − T 2)

(T 2 + T 2
0 )

2
. (D.15)

Inserting the solution (D.12) in Eq. (D.15) and taking the classical limit |T | →
∞, one obtains

PT =
χ2
0

T 2
0

. (D.16)

In the case of dust, PT is the total dust mass of the Universe, yielding PT ≥
1060. If one takes the curvature scale at the bounce some few orders of magnitude
larger than the Planck length, say 103, in order to not spoil the Wheeler-DeWitt
approach used above due to strong quantum gravitational effects, one has to
have χ0 ≥ 1033, with probability less than exp(−1063) to occur (see Eq. (D.5)).
The situation is similar with radiation, where now PT = χ2

0/T
2
0 ≥ 10116. Note

that in this case χ0 = a0, T = η, and the curvature scale at the bounce reads
Lbounce ≡ T0a0. Combining the constraints a0/T0 ≥ 1058 and a0T0 ≥ 103, one
arrives at the very low probability exp(−1089) for these parameters to occur.
The source of the problem is the fact that the constant χ0 appearing in

Eq. (D.16) is also the value of χ at T = 0, the χ at the bounce, and the
fact that PT must be large, induces a large χ2/T0 in the gaussian (D.5). One
possibility to scape from this drawback is to find a different wave solution to
Eq. (D.2) which either modifies Eq. (D.16) or yields Bohmian trajectories where
χ0 is not anymore the value of χ at T = 0, allowing the possibility of having a
small initial χ, hence a small χ2/T0 in (D.5), and a huge χ0, perhaps through
the presence of an inflationary phase between the bounce and the standard de-
celerated expansion. I will show in the next section that it is indeed possible
to obtain a more general class of wave solutions of Eq. (D.2) where the above
mentioned problem is circumvented.

D.4. New bouncing solutions

I will generalize the initial wave function by inserting a velocity term in Eq. (D.5),
which of course must satisfy the boundary condition (D.4), and now reds,

Ψ(init)(χ) =

(
2

T0π

)1/4

[1±exp(−u2T0/8)]−1/2[exp(iuχ/2)±exp(−iuχ/2)] exp
(
−χ

2

T0

)
.

(D.17)
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This initial wave function represents two gaussians travelling from the origin
in opposite directions (keeping in mind that only the tail of the gaussian trav-
eling in the negative direction with suport on the positive a axis has physical
meaning). The solution for all times read

Ψ(χ, T ) =

[
2T0

π (T 2 + T 2
0 )

]1/4
(1± exp(−u2T0/8)−1/2

(
exp

[
−T0(χ− uT )

2

(T 2 + T 2
0 )

]
exp

{
−i
[
T (χ− uT )2
(T 2 + T 2

0 )
+ 2u(χ− uT/2) + 1

2
arctan

(
T0
T

)
− π

4

]}

± exp

[
−T0(χ+ uT )2

(T 2 + T 2
0 )

]
exp

{
−i
[
T (χ+ uT )2

(T 2 + T 2
0 )
− 2u(χ+ uT/2) +

1

2
arctan

(
T0
T

)
− π

4

]}
(D.18)

which I write as,
Ψ = A(R−e

iS− ± R+e
iS+),

where

R± ≡ exp

[
−T0(χ± uT )

2

(T 2 + T 2
0 )

]
,

S± ≡
[
−T (χ± uT )

2

(T 2 + T 2
0 )
± 2u(χ± uT/2)− 1

2
arctan

(
T0
T

)
+
π

4

]
,

A ≡
[

2T0
π (T 2 + T 2

0 )

]1/4
(1± exp(−u2T0/8)−1/2.

From these equations one obtains the total amplitude and phase as

R = A
√
R2

+ +R2
− ± 2R+R− cos(S+ − S−)

S = arctan

(
R+ sin(S+)± R− sin(S−)

R+ cos(S+)± R− cos(S−)

)

The derivative of S with respect to some variable x reads

∂S

∂x
=

R2
+
∂S+

∂x
+R2

−
∂S−

∂x
±
(
∂S+

∂x
+ ∂S−

∂x

)
R+R− cos (S+ − S−)±

(
R−

∂R+

∂x
− R+

∂R−

∂x

)
sin (S+ − S−

R2
+ +R2

− ± 2R+R− cos(S+ − S−)

The guidance relation (D.8) leads to the exact differential equation

χ̇(T ) =
Tχ(T )

T 2 + T 2
0

+
uT 2

0

T 2 + T 2
0

[sinh
(
θ T
T0

)
± T

T0
sin θ

cosh

(
θ T
T0

)
± cos θ

]
, (D.19)

where

θ ≡ 4uT 2
0χ(T )

T 2 + T 2
0

. (D.20)
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From the solution (D.18), the new PT is now given by

PT =
∂S

∂T
=

T0
2(T 2 + T 2

0 )
+
[u2T 2

0 − χ2(T )](T 2
0 − T 2)

(T 2 + T 2
0 )

2
+

[
4uT 2

0 Tχ(T ) sinh

(
θ T
T0

)
± 2T0uχ(T )(T

2 − T 2
0 )

(T 2 + T 2
0 )

2

[
cosh

(
θ T
T0

)
± cos θ

]

(D.21)
From now on I will work with the plus sign solution given in Eq. (D.18). The

minus sign solution yields the same qualitative results.

D.4.1. Quantum solutions for small u

Taking u << 1, one has

χ̇(T ) =
Tχ(T )

T 2 + T 2
0

+
4χ(T )u2TT 3

0

(T 2 + T 2
0 )

2
, (D.22)

with solution

χ(t) =
χ0

T0

√
T 2 + T 2

0 exp

[−2u2T 3
0

T 2 + T 2
0

]

= χ0

√
x2 + 1 exp

[−2u2T0
x2 + 1

]
, (D.23)

where in the last step I wrote the solution in terms of x = T/T0.
Solution (D.23) has very nice properties. First of all, one can see that the

values of χ and the curvature scale at the bounce are now given by

χbounce = χ0 exp(−2u2T0), (D.24)

and

Lbounce = exp

[
−4wu2T0
(1− w)

]
T0a

3w
0√

1 + 4u2T0
. (D.25)

Inserting solution (D.23) into Eq. (D.21) in the limit |T | → ∞, yields

PT =
χ2
0

T 2
0

. (D.26)

Note that now χ0 6= χbounce, the value of χ at T = 0. In fact, from Eq. (D.24),
one may have χ0 >> χbounce, depending on the value of T0, because of the
huge acceleration one may obtain near after the bounce as compared with the
case where u = 0: it is a bounce followed by inflation. Hence, one may have
reasonable probability amplitudes for the free parameters of the theory which
are compatible with a huge PT .
However, one must also check whether the Bohmian trajectory (D.23), with

such apropriate choice of parameters, reachs classical evolution (x >> 1) be-
fore the nucleosynthesis epoch. Let us concentrate on the case of radiation
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(w = 1/3), as it is the most interesting physical situation (one expects the
quantum effects and the bounce to occur in a very hot radiation dominated
universe). Supose the classical limit is already valid at a conformal time where
the energy density of radiation is minimally greater than the energy density be-
fore nucleosynthesis, say, the energy density around the freeze-out of neutrons,
ρf ≈ 10−88. Then, from Eqs. (D.23) and (D.26), and from ρf = PT/a

4
f , with

af = a0ηf/T0, one obtains xf ≡ ηf/T0 ≈ 1022/(T0P
1/4
T ). Using that PT ≥ 10116,

one gets that xf ≤ 10−7/T0. Hence, xf >> 1 if and only if T0 << 10−7. How-
ever, as u << 1, then u2T0 << 1, and the exponential in (D.23) would be
irrelevant, turning solution (D.23) very close to solution (E.296) for w = 1/3,
taking us back to the previous problem. Concluding, the only way to obtain a
huge PT with parameters with reasonable probability amplitudes in this frame-
work is through choices which will change the usual scale factor evolution during
nuclosynthesis, spoiling its observed predictions.

D.4.2. Quantum solutions for large u

If u >> 1, for |T | not very small, and noting that the unique possible asymp-
totic behaviour of a solution χ(T ) of Eq. (E.11.1) is χ(T ) ∝ T , then the hyper-
bolic functions in (E.11.1) are very large and much greater than the terms with
trigonometric functions, yielding

χ̇(T ) =
Tχ(T )

T 2 + T 2
0

± uT 2
0

T 2 + T 2
0

, (D.27)

with solution

χ(T ) =
χ0

T0

√
T 2 + T 2

0 ± uT, (D.28)

where the ± sign corresponds to positive and negative values of T , respectively.
For |T | ≈ 0, one has to rely on numerical calculations. However, as shown in
figure 1 below, for large u this difference is quite unimportant. Hence, again, χ0

is very close to the value of χ at the bounce.
Inserting solution (D.28) into Eq. (D.21) in the limit |T | → ∞, we obtain

PT =

(
χ0

T0
+ u

)2

. (D.29)

Hence, the huge values of PT can be obtained from large values of u, without
any imposition on the parameters χ0 and T0.
Let us calculate the constraints on the parameter space in order to obtain a

sensible model. As discussed in section II, one should have a20/T0 ≤ 1 in order
to have a reasonable probability amplitude for a0, and the curvature scale at the
bounce should not be very close to the Planck length in order to avoid strong
quantum gravitational effects. I will also impose that a0 > 1 in order to avoid
transplanckian problems (see below), which implies that a0/T0 ≤ 1.
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The curvature scale at the bounce reads

Lbounce =
a0T0

√
a0[1 + cos(4ua0)]√

a0[1 + cos(4ua0)] + uT0[4ua0 + sin(4ua0)]

≈ a0
√
T0

2u
, (D.30)

where in the last approximation I used that uT0/a0 >> 1, which follows from
u >> 1, a0/T0 ≤ 1, and I assumed that 4ua0 6= (2n + 1)π, in order to avoid

Lbounce << 1. Hence, as a0 ≤ T
1/2
0 , then

Lbounce ≤
T0
2u

(D.31)

Demanding that Lbounce ≥ 103, than

T0 > u103 >> 1. (D.32)

One must check again whether one recovers the classical radiation dominated
evolution before nucleosynthesis. As before, I concentrate on the case w = 1/3,
which implies that χ = a and T = η. I will do this in two steps: first I
check whether solution (D.28) is valid before nucleosynthesis, and then whether
quantum effects are negligible there.
The approximation leading to solution (D.28) requires that the argument of

the hyperbolic functions in Eq. (E.11.1) be large, θT/T0 >> 1, which implies

that x = η/T0 >> (4u2T0 − 1)−1/2 ≈ 1/(2uT
1/2
0 ). Hence, the values of the

conformal time for which solution (D.28) is reliable are η >> T
1/2
0 /(2u).

Let us now verify whether solution (D.28) is valid around the freeze-out of

neutrons, before nucleosynthesis. This will be true if ηf >> T
1/2
0 /(2u). How-

ever, ηf ≈ 1022/P
1/4
T = 1022/u1/2 which, when combined with ηf >> T

1/2
0 /(2u),

implies that 1044 >> T0/(4u) ≥ Lbounce, where I used Eq. (D.31). As the curva-
ture scale around freeze-out of neutrons, Lf , satisfies Lf ≈ 1044, this condition
is just the reasonable constraint that

Lbounce << Lf ≈ 1044. (D.33)

Hence, if the curvature scale at the bounce is much smaller than the curva-
ture scale around freeze-out of neutrons, than solution (D.28) must be valid at
nucleosynthesis period.
Finally, one must check that in the regime where solution (D.28) is valid we are

already in the classical limit, even though the above condition x >> 1/(2uT
1/2
0 )

may still contain a region were x << 1 because u and T0 are large. To prove
this, note first that at η >> T

1/2
0 /(2u), the term uη >> T

1/2
0 /2 dominates over

a0
√
x2 + 1 in Eq. (D.28), either for x << 1, because a0 ≤ T

1/2
0 , as for x >> 1,

because a0/T0 << u. Hence, the quantum potential given by

Q := − ∂2R

4R∂χ2
=: Q1 +Q2

2, (D.34)

2014



where

Q1 = −T0{[4T0(χ2 + u2T 2)− (T 2 + T 2
0 )] cosh(θT/T0)− 8uT0Tχ sinh(θT/T0)

+ [4T0(χ
2 − u2T 2

0 )− (T 2 − T 2
0 )] cos θ + 8T 2

0χu sin θ}{2(T 2 + T 2
0 )

2[cosh(θT/T0) + cos θ]}−1,(D.35)

and

Q2 = T0
X [cosh(θT/T0) + cos θ]− u[T sinh(θT/T0)− T0 sin θ]

(T 2 + T 2
0 )[cosh(θT/T0) + cos θ]

, (D.36)

reads, around the Bohmian trajectory a ≈ uη,

Q ≈ 1

cosh(2θT/T0)
<< 1, (D.37)

while the kinetic term of the Hamilton-Jacobi-like equation (D.9) is given by,

(
∂S

2∂a

)2

≈ u2 >> 1. (D.38)

Note that near the bounce at η ≈ 0, the kinetic term is almost null, while
the quantum potential is finite: quantum effects are dominant only very near
the bounce. The transition from quantum to classical regime should be around
θT/T0 ≈ 1, where Q ≈ 1 and solution (D.28) is not reliable. A little bit later,

when x = η/T0 > (4u2T0 − 1)−1/2 ≈ 1/(2uT
1/2
0 ), and knowing from Eq. (D.32)

that T0 > 1061 because u > 1058, we obtain that the scale factor at the beginning
of the classical regime is a > 1031 which is the minimum value required for the
model to reach the size of the observed Universe without needing any classical
inflationary phase afterwards. Note from figure 1 that the presence of the u term
in Eq. (D.28) induces a much bigger acceleration at the bounce in comparison
with the solution with the same a0 but without the u term. It is this term which
is the responsible for the big value a > 1031 when the model enters the classical
regime.
Concluding, solution (D.28) reachs the standard cosmological model before

nucleosynthesis, and can indeed describe the observed Universe in the radiation
dominated phase with parameters with reasonable relative probabilities.
In order to avoid the transplanckian problem for the scales of physical interest

today, 1054 < λphysicaltoday < 1060, one should have λphysicalbounce corresponding to these
scales not smaller than, say, 103. As

λphysicalbounce =
a0

atoday
λphysicaltoday , (D.39)

this problem can be avoided if

a0
atoday

> 10−51, (D.40)
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which implies that a0 > 109.
Note that there is an upper limit for a0 coming from

Lbounce ≈
a0T

1/2
0

2u
≥ 1064

(
a0

atoday

)2

, (D.41)

where I used that a20/T0 ≤ 1, PT ≈ u2 ≈ a4today10
−128. The constraint Lbounce <<

1044 (see Eq.(D.33)) then implies that

a0
atoday

<< 10−10. (D.42)

Hence, there is a large domain of values of a0 where the transplanckian problem
can be avoided (see Eqs.(D.40,D.42)).

D.5. Conclusion

I have shown in this paper how a sufficiently big universe can emerge from a
quantum cosmological bounce, without needing any classical inflationary phase
afterwards to make it grow to its present size. This is caused by a huge ac-
celeration during the quantum bounce, which may be viewed as a quantum
inflation. These results were obtained from a moving gaussian function of the
scale factor, which is a solution of the Wheeler-DeWitt equation coming from
the canonical quantization of general relativity sourced by relativistic particles.
The solution is exact, there is no WKB approximation involved here. Its value
at T = 0 yields reasonable relative probability amplitudes of having the scale
factor at the bounce with the value a0 required to avoid any transplanckian
problem, and to allow that the curvature scale at the bounce be some few or-
ders of magnitude greater than the Planck length, a region where one can rely
on this simple quantization scheme. In fact, as the maximum value the curva-
ture scale can have is at the bounce itself, one never reachs energy scales where
more involved quantum gravity theories, like string theory and loop quantum
gravity (see Ref. [17] about issues concerning this approach), must be invoked:
the model is self-contained.
There are two internal parameters of the wave functon which must be big in

order to obtain a large classical universe from a quantum bounce. The first one
is the parameter T0, the square root of the width of the gaussian at the moment
of the bounce (see Eq. (D.17)), which must satisfy T0 > 1061 (in Planck unities).
This value yields the sufficient large value a > 1031 for the scale factor in the
beginning of the classical regime, and guarantees that the curvature scale at the
bounce be some minimum orders of magnitude greater than the Planck length
in order for the Wheeler-DeWitt equation I used be reliable. The other one
is the velocity u of the gaussian along the scale factor axis which must satisfy
u > 1058 in order to yield the amount of radiation we observe in the Universe
today, without appealing to some huge production of photons during the bounce.

2016



From these considerations, one can see that the parameters emerging from
the quantum era of the Universe are not necessarily Planckian: they depend
also on the quantum state of the system, on the internal parameters of the wave
function of the Universe. Hence, it is not surprising that one may have quantum
gravity effects in large (when compared with the Planck length) Universes [18],
which could be dramatically seen in a big-rip [284].
However, one may ask why the internal parameters of the wave function

we obtained are so large. Note first that these are not coupling constants, but
parameters in the quantum state of the Universe. Hence, to answer this question,
one should rely on some deep understanding of quantum cosmology and/or new
principles which are not available today. Note, however, that the big value of T0
leads to a widely spread gaussian, and hence almost all scales at the bounce are
equally probable. This is a reasonable assumption about the wave function of
the Universe one can make: it should not intrinsically select any preferable scale
at the bounce without any special reason. Concerning the u variable, its large
value implies that the peak of the initial wave packet moves very fast towards
large scale factors, which induces a large universe. Perhaps some version of
the Anthropic Principle could justify the preference for large classical universes,
and as consequence for a large u, but I think the important message here is the
possibility of obtaining a large universe from a huge acceleration of the scale
factor in the far past, whose origin differs fundamentally from those considered
in usual inflationary scenarios.
In future publications, we will calculate the evolution of linear quantum

perturbations and particle production on these quantum backgrounds, as in
Ref. [15], and compare the results with observations.
As a final remark, I would like to repeat a comment we made elsewhere [4]: in

contradistinction with models in which time begins, there is no point on asking
what is the probability of appearance of some particular eternal model out of
nothing. Contrary to usual perspectives, one can as well assume existence to
be conceptually prior to non-existence, i.e. existence itself may not be deserving
explanation. This is the idea underlying our category of models: the Universe
always existed and its “appearance” is thus a non question.
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E.1. Introduction

The standard cosmological model (SCM) furnishes an accurate description of
the evolution of the universe, which spans approximately 13.7 billion years. The
main hypothesis on which the model is based are the following:

1. Gravity is described by General Relativity.

2. The universe obeys the Cosmological Principle [109]. As a consequence,
all the relevant quantities depend only on global Gaussian time.

3. Above a certain scale, the matter content of the model is described by a
continuous distribution of matter/energy, which is described by a perfect
fluid.

In spite of its success, the SCM suffers from a series of problems such as the
initial singularity, the cosmological horizon, the flatness problem, the baryon
asymmetry, and the nature of dark matter and dark energy 1, 2. Although
inflation (which for many is currently a part of the SCM) partially or totally
answers some of these, it does not solve the crucial problem of the initial singu-
larity [70] 3. The existence of an initial singularity is disturbing: a singularity
can be naturally considered as a source of lawlessness [142], because the space-
time description breaks down “there”, and physical laws presuppose spacetime.
Regardless of the fact that several scenarios have been developed to deal with the
singularity issue, the breakdown of physical laws continues to be a conundrum

1There are even claims that standard cosmology does not predict the value of the present
CMBR temperature [215].

2Some “open questions” may be added to this list, such as why the Weyl tensor is nearly
null, and what the future of the universe is.

3Inflation also presents some problems of its own, such as the identification of the inflaton
with a definite field of some high-energy theory, the functional form of the potential V in
terms of the inflaton [52], and the need of particular initial conditions [181]. See also [302]
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after almost a hundred years of the discovery of the FLRW solution 4 (which
inevitably displays a past singularity, or in the words of Friedmann [166], a
beginning of the world).
In this review, we shall concentrate precisely on the issue of the initial singu-

larity 5. We will see that non-singular universes have been recurrently present
in the scientific literature. In spite of the fact that the idea of a cosmological
bounce is rather old, the first exact solutions for a bouncing geometry were ob-
tained by Novello and Salim [311], and Melnikov and Orlov [286] in the late 70’s
6. It is legitimate to ask why these solutions did not attract the attention of the
community then. In the beginning of the 80’s, it was clear that the SCM was
in crisis (due to the problems mentioned above, to which we may add the cre-
ation of topological defects, and the lack of a process capable of producing the
initial spectrum of perturbations, necessary for structure formation). On the
other hand, at that time the singularity theorems were taken as the last word
about the existence of a singularity in “reasonable” cosmological models. The
appearance of the inflationary theory gave an answer to some of the issues in a
relatively economical way, and opened the door for an explanation of the origin
of the spectrum of primordial fluctuations. Faced with these developments, and
taking into account the status of the singularity theorems at that time, the issue
of the initial singularity was not pressing anymore, and was temporally aban-
doned in the hope that quantum gravity would properly address it. At the end
of the 90’s, the discovery of the acceleration of the universe brought back to the
front the idea that ρ+ 3p could be negative, which is precisely one of the con-
ditions needed for a cosmological bounce in GR, and contributed to the revival
of nonsingular universes. Bouncing models even made it to the headlines in the
late 90’s and early XXI century, since some models in principle embedded in
string theory seemed to suggest that a bouncing geometry could also take care
of the problems solved by inflation.
Perhaps the main motivation for nonsingular universes is the avoidance of

lawlessness, as mentioned above 7. Also, since we do not know how to handle

4This acronym refers to the authors that presented for the first time the solution of EE that
describes a universe with zero pressure (Friedmann [166]) and nonzero pressure (Lemâitre
[253]), and to those who studied its general mathematical properties and took it to its
current form (Robertson [354] and Walker [413]). For historical details, see [288]

5We shall not analyze the existence of future singularities, such as the so-called sudden future
singularities [36] or the “Big Rip” [92].

6An approximate bouncing solution for a massive minimally coupled scalar field in General
Relativity was presented in [384].

7It is worth noting that Einstein was well aware of the problem of singularities in GR [337],
and he made several attempts to regularize some solutions of his theory, such as the so-
called Einstein-Rosen bridge, in the early 30s. Indeed, he wrote ”The theory (GR) is based
on a separation of the concepts of the gravitational field and matter. While this may be
a valid approximation for weak fields, it may presumably be quite inadequate for very
high densities of matter. One may not therefore assume the validity of the equations for
very high densities and it is just possible that in a unified theory there would be no such
singularity” [146].
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infinite quantities, we would like to have at our disposal solutions that do not
entail divergencies. As will be seen in this review, this can be achieved at
a classical level, and also by quantum modifications. On a historical vein, this
situation calls for a parallel with the status of the classical theory of the electron
by the end of the 19th century. The divergence of the field on the world line of
the electron led to a deep analysis of Maxwell’s theory, including the acceptance
of a cooperative influence of retarded and advanced fields [356] 8, and the related
causality issues. However, this divergence is milder than that of some solutions
of General Relativity, since it can be removed by the interaction of the electron
with the environment. Clearly, this is not an option when the singularity is that
of a cosmological model.
Another motivation for the elimination of the initial singularity is related

to the Cauchy problem. In the SCM, the structure of spacetime has a natural
foliation (if no closed timelike curves are present), from which a global Gaussian
coordinate system can be constructed, with g00 = 1, g0i = 0, in such a way that

ds2 = dt2 − gij dxidxj .
The existence of a global coordinate system allows a rigorous setting for the
Cauchy problem of initial data. However, it is the gravitational field that di-
verges on a given spatial hypersurface t = const. (denoted by Σ) at the singu-
larity in the SCM. Hence, the Cauchy problem cannot be well formulated on
such a surface: we cannot pose on Σ the initial values for the field to evolve.
There are more arguments that suggest that the singularity should be absent

in an appropriate cosmological model. According to [48], the second law of
thermodynamics is to be supplemented with a limit on the entropy of a system
of largest linear dimension R and proper energy E, given by

S

E
≤ 2πR

~c
.

Currently this bound is known to be satisfied in several physical systems [370].
It was shown in [49] that the bound is violated as the putative singularity is
approached in the radiation-dominated FLRW model (taking as R the particle
horizon size). The restriction to FLRW models was lifted in [370], where it was
shown, independently of the spacetime model, and under the assumptions that
(1) causality and the strong energy condition (SEC, see Appendix) hold, (2) for
a given energy density, the matter entropy is always bounded from above by
the radiation entropy, that the existence of a singularity is inconsistent with the
entropy bound: a violation occurs at time scales of the order of Planck’s time 9.
From the point of view of quantum mechanics, we could ask if it is possible

to repeat in gravitation what was done to eliminate the singularity in the clas-
sical theory of the electron. Namely, can the initial singularity be smoothed via

8In fact, it can be said that the problem of the singularity of the classical theory of the
electron was transcended, if not resolved, by the quantization of the EM field.

9For an updated discussion of the several types of entropy bounds in the literature, see [86].
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quantum theory of gravity? The absence of the initial singularity in a quan-
tum setting is to be expected on qualitative grounds. There exists only one
quantity with dimensions of length that can be constructed from Newton’s con-
stant G, the velocity of light c, and Planck’s constant ~ (namely Planck’s length
ℓP l =

√
G~/c3). This quantity would play in quantum gravity a role analogous

to that of the energy of the ground state of the hydrogen atom (which is the
only quantity with dimensions of energy that can be built with fundamental
constants) [62]. As in the hydrogen atom, ℓP l would imply some kind of dis-
creteness, and a spectrum bounded from below, hence avoiding the singularity
10. Also, since it is generally assumed that ℓP l sets the scale for the quantum
gravity effects, geometries in which curvature can become larger than ℓ−2

P l or can
vary very rapidly on this scale would be highly improbable.

Yet another argument that suggests that quantum effects may tame a singu-
larity is given by the Rayleigh-Jeans spectrum. According to classical physics,
the spectral energy distribution of radiation in thermal equilibrium diverges like
ω3 at high frequencies, but when quantum corrections are taken into account,
this classical singularity is regularized and the Planck distribution applies [177].
We may expect that QG effects would regularize the initial singularity.

As a consequence of all these arguments indicating that the initial singularity
may be absent in realistic descriptions of the universe, many cosmological solu-
tions displaying a bounce were examined in the last decades. In fact, the pattern
in scientific cosmologies somehow parallels that of the cosmogonic myths in di-
verse civilizations, which can be classified in two broad classes. In one of them,
the universe emerges in a single instant of creation (as in the Jewish-Christian
and the Brazilian Carajás cosmogonies [116]). In the second class, the universe
is eternal, consisting of an infinite series of cycles (as in the cosmogonies of the
Babylonians and Egyptians) [382].

We have seen that there are reasons to assume that the initial singularity is not
a feature of our universe. Quite naturally, the idea of a non-singular universe
has been extended to encompass cyclic cosmologies, which display phases of
expansion and contraction. The first scientific account of cyclic universes is in
the papers of Friedmann [268], Einstein [147], Tolman [396], and Lemăıtre [254]
and his Phoenix universe, all published in the 1930’s. A long path has been
trodden since those days up to recent realizations of these ideas (as for instance
[179], see Sect.E.10.2). We shall see in Ch.E.10 that some cyclic models could
potentially solve the problems of the standard cosmological model, with the
interesting addition that they do not need to address the issue of the initial
conditions.

Another motivation to consider bouncing universes comes from the recogni-
tion that a phase of accelerated contraction can solve some of the problems of
the SCM in a manner similar to inflation. Let us take for instance the flat-

10This expectation has received support from the proof that the spectrum of the volume
operator in LQG is discrete, see for instance [267].

2024



ness problem (see also Sect.E.10). Present observations imply that the spatial
curvature term, if not negligible, is at least non-dominant wrt the curvature
term:

r2 =
|ǫ|
a2H2

. 1,

but during a phase of standard, decelerated expansion, r grows with time. In-
deed, if a ∼ tβ, then r ∼ t1−β. So we need an impressive fine-tuning at, say,
the GUT scale, to get the observed value of r 11. This problem can be solved
by introducing an early phase during which the value of r, initially of order 1,
decreases so much in time that its subsequent growth during FLRW evolution
keeps it still below 1 today. This can be achieved by [179] power-law inflation
(a ∼ tβ , β > 1), pole inflation (a ∼ (−t)β , β < 0, t → 0−), and accelerated
contraction (0 < β < 1, t → 0−) [172]. Thus, an era of accelerated contraction
may solve the flatness problem (and the other kinematical issues of the SCM
[179]). This property helps in the construction of a scenario for the creation of
the initial spectrum of cosmological perturbations in non-singular models (see
Sect.E.11).

The main goal of this review is to present some of the many non-singular
solutions available in the literature, exhibit the mechanism by which they avoid
the singularity, and discuss what observational consequences follow from these
solutions and may be taken (hopefully) as an unmistakable evidence of a bounce.
We shall not pretend to produce an exhaustive list, but we intend to include at
least an explicit form for the time evolution of a representative member of each
type of solution 12. The models examined here will be restricted to those close
or identical to the FLRW geometry 13. Although theories other than GR will
be examined, we shall not consider multidimensional theories (exception made
for models derived from string theory, see Sect.E.3.3) or theories with torsion.

We shall start in Sect.E.1.1 by stating a working definition of nonsingular uni-
verse, and giving a brief account of the criteria that can be used to determine
whether a certain model is singular or not. It will suffice for our purposes in
this review to define a singularity as the region where a physical property of the
matter source or the curvature “blows up” [412]. In fact, since we shall be deal-
ing almost exclusively with geometries of the Friedmann type, the singularity is
always associated to the divergence of some functional of the curvature 14.

11But notice that the flatness problem may actually not be a problem at all if gravity is not
described by GR, see Sect.E.2.2

12The issue of singularities in cosmology has been previously dealt with in [168].
13Notice however the solutions given in [371]. These are non-singular but do not display the

symmetries of the observed universe, although they are very useful as checks of general
theorems.

14But notice that not all types of singularities have large curvature, and diverging curvature
is not the basic mechanism behind singularity theorems. If we consider the problem of
singularities in a broad sense, we seem to be “treating a symptom rather than the cause”
when addressing exclusively unbounded curvature [66].

2025



Let us remark at this point that there are at least two different types of non-
singular universes: (a) bouncing universes (in which the scale factor attains a
minimum), and (b) “eternal universes”, which are past infinity and ever ex-
panding, and exist forever. Class (a) includes cyclic universes. The focus of this
review are those models in class (a), although we shall review a few examples
of models in class (b) in Sect.E.8.

Notation, conventions, etc

Throughout this report, the Einstein’s equations (EE) are given by

Rµν −
1

2
Rgµν + Λgµν = −κTµν ,

where Λ is the cosmological constant, and κ = 8πG/c4, which we shall set equal
to 1, unless stated otherwise, while the metric of the FLRW model is

ds2 = dt2 − a2(t)
[

dr2

1− ǫr2 + r2 (dθ2 + sin2 θ dϕ2)

]
, (E.1)

where ǫ = −1, 0, +1. The 3-dimensional surface of homogeneity t =constant
is orthogonal to a fundamental class of observers endowed with a four-velocity
vector field vµ = δµ0. In the case of a perfect fluid with energy density ρ and
pressure p, EE take the form

ρ̇+ 3(ρ+ p)
ȧ

a
= 0, (E.2)

ä

a
= − 1

6
(ρ+ 3p) +

Λ

3
, (E.3)

in which Λ is the cosmological constant, and the dot denotes the derivative w.r.t.
cosmological time. These equations admit a first integral given by the so-called
Friedmann equation:

1

3
ρ =

(
ȧ

a

)2

+
ǫ

a2
− Λ

3
. (E.4)

The energy-momentum tensor of a theory specified by Lagrangian L is given by

Tµν =
2√−g

δ(
√−g L)
δgµν

, (E.5)

where g = det(gµν). In the case of a perfect fluid, Tµν takes the form

Tµν = (ρ+ p)uµuν + pgµν ,

where uµ is the velocity of the fluid.
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E.1.1. Singularities, bounces, and energy conditions

The issue of the initial singularity of the FRLW solution was debated for a
long time, since it was not clear if this singular state was an inherent trace
of the universe or just a consequence of the high degree of symmetry of the
model. This question was discussed firstly in an analytical manner by Lifshitz
and collaborators in [50], where geometries that are solutions of EE with a
maximum number of allowed functions were analyzed. The results wrongly
suggested that the singularity was not unavoidable, but a consequence of the
special symmetries of the FLRW solution 15.
From a completely different point of view, Hawking, Penrose, Geroch and

others developed theorems that give global conditions under which timelike and
null geodesics cannot be extended beyond a certain (singular) point [142]. The
goal in this case was not about proving the existence of a region of spacetime in
which some functional of the metric is divergent. Instead, the issue of the sin-
gularity was considered from a wider perspective, characterizing a spacetime as
a whole, by way of its global properties, such as the abrupt termination of some
geodesics in the manifold. Let us present a typical example of these theorems
[205]:

Theorem: The following requirements cannot all be true for a given space-
time M:

1. There exists a compact spacelike hypersurface (without boundary) H;

2. The divergence θ of the unit normals to H is positive at every point of H;

3. Rµν v
µ vν ≤ 0 for every non-spacelike vector vµ;

4. M is geodesically complete in past timelike directions.

Notice that the link of this theorem with physics comes through condition (3)
via EE, yielding a statement about the energy-momentum tensor:

Tµνv
µvν − T

2
≥ 0, (E.6)

called the strong energy condition (SEC), see the Appendix. Notice also that,
although not explicitly mentioned, this theorem assumes the absence of closed
timelike curves [142]. With hindsight 16, it can be said that the strength of
these theorems is the generality of their assumptions (at the time they were
conceived), while their weakness is that they give little information about how
the approach to the singularity is described in terms of the dynamics of the
theory or about the nature of the singularity. In any case, if we assume that the

15For a reappraisal of the work in [50], see for instance [352] and references therein.
16From a mathematical point of view, a negative energy could also allow for a bounce. We

will not examine this possibility in the present paper.
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universe is nonsingular, a positive attitude regarding the singularity theorems is
to consider that they show the limits of applicability of “reasonable” hypothesis
(such as GR or the energy conditions, see the Appendix) [66].
A local definition of a bounce can also be given, in the GR framework, in terms

of the so-called Tolman wormhole [291, 210] (see below). Both in this case and in
that of the above mentioned theorems, the non-singular behavior in GR is only
possible when the SEC is violated. The assumption of such a condition seemed
reasonable in the early seventies, but several situations have been examined
in the literature that may be relevant in some epoch of the evolution of the
universe, for which SEC is not fulfilled, such as curvature-coupled scalar fields
and cosmological inflation [27, 291, 357].
Next we shall examine in some detail how the singularity can be avoided. In

the following, we shall use a simple form of the singularity theorems 17. Let
us first introduce some definitions (following [150]). The covariant derivative of
the 4-velocity vµ of the fluid that generates the geometry can be decomposed as
follows

vν;µ =
1

3
θ hµν + σµν + ωνµ + vµv̇ν , (E.7)

where θ = vµ;µ is the expansion, hµν = gµν−vµvν , the trace-free symmetric shear
tensor is denoted by σµν , and ωµν is the vorticity tensor (see Eqns.(E.363) and
(E.364)). Defining S by 18

Ṡ

S
=
θ

3
, (E.8)

the Raychaudhuri equation [350], which follows from Eqn.(E.7) can be written
as 19

3
S̈

S
+ 2(σ2 − ω2)− v̇µ;µ = −1

2
(ρ+ 3p) + Λ, (E.9)

where Aµ = vνvµ;ν ≡ v̇µ is the acceleration.

Theorem[148]: In a universe where ρ+3p ≥ 0 is valid, Λ ≤ 0, and v̇µ = ωµν = 0
at all times, at any instant when H = 1

3
θ > 0, there must have been a time

t0 < 1/H such that S → 0 as t→ t0. A space-time singularity occurs at t = t0,
in such a way that ρ and the temperature T diverge.
Several remarks are in order. First, EE were used to obtain Eqn.(E.9). Hence,

the consequences of the theorem are only valid in the realm of GR. Second, the
singularity implied in the theorem is universal: any past-directed causal curve
ends at it with a finite proper length, in line with a coherent definition of a
cosmological singularity (if null curves are allowed for causal curves, then affine
length has to be used for them instead of proper length which would vanish) 20.
Third, since there is no restriction on the symmetries of the geometry, θ is in

17This will suffice for our goals, more refined formulations can be found in [371].
18S corresponds to the scale factor a in the case of the FLRW universe.
19This equation was independently obtained by A. Komar [248].
20See [371] and [102] for a classification of singularities.

2028



principle a function of all the coordinates, so that the theorem applies not only
to Friedmann-Lemaitre-Robertson-Walker (FLRW) models, but also to most of
the spatially homogeneous, and to some inhomogeneous models (see examples
in [371]). Fourth, as we mentioned before, the condition ρ + 3p ≥ 0, or more
generally, SEC, is violated even at the classical level, for instance by the massive
scalar field, and also at the quantum level (as in the Casimir effect 21). So it
would be desirable to have singularity theorems founded on more general energy
conditions, but this goal has not been achieved yet (see [371]).
Notice that in the general case, acceleration and/or rotation could in prin-

ciple avoid the singularity [371], but high pressure cannot prevent the initial
singularity in the FLRW model. Rather, it accelerates the collapse. This can
be seen as follows. The conservation equations T µν;µ = 0 give

vµρ,µ + (ρ+ p)θ = 0,

(ρ+ p)Aµ = −hµνp,ν .
Since p,i = 0 in the FLRW, there is no acceleration. Furthermore, the pressure
contributes to the the active gravitational mass ρ+3p. Finally, not even a large
and positive Λ can prevent the singularity in the context of the theorem [148].
As mentioned before, a bounce can also be defined locally. The minimal con-

ditions from a local point of view for a bounce to happen in the case of a FLRW
universe were analyzed in [291], where a Tolman wormhole was defined as a uni-
verse that undergoes a collapse, attains a minimum radius, and subsequently
expands. Adopting in what follows the metric Eqn.(E.1), to have a bounce it is
necessary that ȧb = 0, and äb ≥ 0. For this to be a true minimum of the scale
factor (conventionally located at t = 0) there must exists a time t̃ such that
ä > 0 for all t ∈ (−t̃, 0)∪ (0, t̃). From EE in the FLRW universe (neglecting the
cosmological constant term) we get

ρ = 3

(
ȧ2

a2
+

ǫ

a2

)
,

p = −
(
2
ä

a
+
ȧ2

a2
+

ǫ

a2

)
.

From these, the combinations relevant for the energy conditions (see Sect.E.1.3)
are:

ρ+ p = 2

(
−d

2 ln a

dt2
+

ǫ

a2

)
,

ρ− p = 2

(
1

3a3
d2(a3)

dt2
+ 2

ǫ

a2

)
,

ρ+ 3p = −6 ä
a
.

21In fact, it has been shown in [208] that the Casimir effect associated to a massive scalar
field coupled to the Ricci scalar in a closed universe can lead to a bounce.
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From these conditions and ȧb = 0, and äb ≥ 0 it follows that [291]

∃ bounce and ǫ = −1⇒ NEC violated, 22

∃ bounce and (ǫ = 0; äb > 0)⇒ NEC violated,

∃ bounce and (ǫ = 1; äb > a−1
b )⇒ NEC violated,

The definition of ρ and p and ä > 0 imply that:

ρ+ p < 2
ǫ

a2
,

ρ− p > 2
ǫ

a2
,

ρ− 3p < 0.

It follows that
∃ bounce and ǫ 6= 1⇒ NEC violated,

∃ bounce⇒ SEC violated.

The case that minimizes the violations of the energy conditions can be stated
as

∃ bounce and (ǫ = +1; äb ≤ a−1
b )⇒ NEC,WEC,DEC satisfied; SEC violated.

This result may be expected since the curvature term with ǫ = +1 acts like a
negative energy density in Friedmann’s equation. Notice that in this analysis,
only Einstein’s equations and the point-wise energy conditions were used, with-
out assuming any particular equation of state. In a certain sense, this is the
inverse of the theorem stated earlier, which assumed the validity of the SEC 23.
The restriction to a FLRW model was lifted in a subsequent paper [210], and

the analysis in a general case was done following standard techniques taken
from the ordinary wormhole case [209]. It was found that even in the case of
a geometry with no particular symmetries, the SEC must be violated if there
is to be a bounce in GR. Consequently, one can conclude that the singularity
theorems that assume that SEC is valid cannot be improved. A highlight in
these analysis is that only the local geometrical structure of the bounce was
needed; no assumptions about asymptotic or topology were required, in contrast
with the Hawking-Penrose singularity theorems [372]. Equally important is the
fact that, as mentioned above, SEC may not be such a fundamental physical
restriction.
To summarize what was discussed up to now, we can say that there is a

“window of opportunity” to avoid the initial singularity in FLRW models at a
classical level by one or a combination of the following assumptions 24:

22For the energy conditions, see Sect.E.1.3.
23An analysis along the same lines but with a more general parametrization for the scale

factor was carried out in [340].
24We shall not consider here the existence of closed timelike curves as a possible cause of a

nonsingular universe.
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1. Violating SEC in the realm of GR 25;

2. Working with a new gravitational theory, as for instance those that add
scalar degrees of freedom to gravity (Brans-Dicke theory being the paradig-
matic example of this type, see Sect.E.3), or by adopting an action built
with higher-order invariants (see Sect.E.2).

As will be seen below, other ways to avoid the singularity are:

1. Changing the way gravity couples to matter (from minimal to non-minimal
coupling, see for instance the case of the scalar field in Sect.E.3);

2. Using a non-perfect fluid as a source, see Sect.E.5.

Finally, quantum gravitational effects also give the chance of a bounce (see
Sect.E.9.2) 26.

E.1.2. Extrema of a(t) and ρ(t)

Let us study the relations imposed by EE between extrema of the scale factor,
the energy density, and the energy conditions, in the case of one fluid. Let us
recall that the sufficient conditions to have a bounce are 27 θb = 0 and θ̇b > 0,
where θ = 3ȧ/a , and the subindex b denotes that the quantities are evaluated
at the bounce. It follows from Raychaudhuri’s equation for the FLRW model
(Eqn.(E.9)) with Λ = 0,

θ̇ +
θ2

3
= −1

2
(ρ+ 3p), (E.10)

that at the bounce we must have (ρ+ 3p)|b < 0, independently of the value of
ǫ (as was also shown in the previous section). From the conservation equation,

ρ̇ = −(ρ+ p)θ,

we see that there may be extrema of ρ when θe = 0 (as in the case of a putative
bounce) and/or when ρe = −pe. The second derivative of the energy density is
given by

ρ̈ = −(ρ̇+ ṗ)θ − (ρ+ p)θ̇. (E.11)

Let us assume first that θe = 0 with ρe + pe 6= 0, which implies that ρ̇e = 0 and

ρ̈e = −(ρe + pe)θ̇e, θ̇e = −
1

2
(ρe + 3pe).

The different possibilities, according to the sign of θ̇e, ρe + pe, and ρ + 3p are
displayed in the following table:

25A complete analysis of the behavior of the energy conditions for different types of singular-
ities has been presented in [102].

26A definition of a nonsingular space using the so-called principle of quantum hyperbolicity
has been given in [66]

27We are assuming that ä 6= 0.
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ρe + 3pe
.

θe ρe + pe ρ̈e ρe ae
< 0

> 0
< 0 > 0 min. min.
> 0 < 0 max.

> 0
< 0

< 0 < 0 max. max.
> 0 > 0 min.

We see that there are two cases that agree with what may be termed “normal
matter” (rows 2 and 4), in the sense that maximum (minimum) compression
leads to maximum (minimum) energy density. Notice however that the case
in row 2 violates the strong energy condition (see Appendix). The other cases
are clearly unusual: minimum density with minimum scale factor (row 1), and
the opposite (that is, maximum density with maximum scale factor, row 3)28.
Notice that it is the null energy condition ρ+ p > 0 (see Appendix) and not the
SEC that is violated at these unusual cases. In fact, if the requirement ρ+p ≥ 0
is not satisfied, then the equation of energy conservation for a perfect fluid,

ρ̇ = −θ(ρ+ p), (E.12)

says that compression would entail a decreasing energy density, which is a rather
unexpected behavior for a fluid 29. Examples of the four behaviors will be found
along this review.
When an EOS p = λρ plus the condition ρ > 0 are imposed30, we see that the

case in row 1 is permitted for λ < −1, and that in row 2, for λ ∈ (−1,−1/3).
The case in row 3 is not allowed for any λ, while that in row for is permitted
for λ > −1/3.
Notice that all the extrema in ρ in Table E.1.2 are global, since the other

possibility (given by ρe+pe = 0) leads to an inflection point in ρ, assuming that
p = λρ.

E.1.3. Appendix: Energy conditions

We shall give next the general expression of the energy conditions, and also their
form for the particular case of the energy-momentum tensor given by

T µν = diag(ρ,−p,−p,−p). (E.13)

• The null energy condition (NEC) states that for any null vector,

NEC ⇔ Tµνk
µkν ≥ 0. (E.14)

In terms of Eq.(E.13),
NEC ⇔ ρ+ p ≥ 0. (E.15)

28The former is precisely the behavior that allows for a bounce in loop quantum gravity [60]
(see Sect.(E.9.2)), while the latter is what is found in the so-called big-rip [284].

29Fluids that violate the NEC are called phantom or ghost fluids, and have been studied in
[91].

30Notice that some models do not satisfy this conditions, see for instance Eqn.(E.184).
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• The weak energy condition (WEC) asserts that

WEC ⇔ Tµνv
µvν ≥ 0 (E.16)

for any timelike vector. In terms of Eqn.(E.13),

ρ ≥ 0, and ρ+ p ≥ 0. (E.17)

• The strong energy condition (SEC) is the assertion that, for any timelike
vector,

SEC ⇔
(
Tµν −

T

2
gµν

)
vµvν ≥ 0. (E.18)

In terms of Eqn.(E.13),

ρ+ p ≥ 0, and ρ+ 3p ≥ 0. (E.19)

Each of these three conditions has an averaged counterpart [411]. There is yet
another condition:

• The dominant energy condition (DEC) says that for any timelike vector

DEC ⇔ Tµνv
µvν ≥ 0 and Tµνv

ν is not spacelike. (E.20)

The different energy conditions are not independent. The following relations
are valid:

WEC ⇒ NEC, (E.21)

SEC ⇒ NEC, (E.22)

DEC ⇒WEC. (E.23)

Notice that if NEC is violated then all the other pointwise energy conditions
would be violated [411].
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E.2. Higher-order gravitational theories

Higher-order terms in the action for gravity (such as R2, RµνR
µν , etc.) typically

appear due to quantum effects, either in the case of quantized matter in a
fixed gravitational background [123], or in the gravitational effective action as
corrections from quantum gravity [132] or string theory 31 [121]. These terms
are expected to be important in situations of high curvature, when the scale
factor is small 32. The models that are engineered to work in the intermediate
regime, where quantized matter fields evolve on a given classical geometry (the
so-called semiclassical approximation) mirror the path taken in the early days
of quantum field theory, in which quantum matter was in interaction with a
classical electromagnetic background field. In the case of gravity, it is generally
agreed that this approach may be valid for distances above ℓP l, although this
statement can only be verified by a complete quantum theory of gravitation, not
yet available. As we shall see in Ch.E.9, some models go below ℓP l, incorporating
effects expected to be present in the complete theory, but for the time being the
quest of the ”correct theory” at this energy level seems far from being settled.

E.2.1. Quantized matter on a fixed background

Let us start by considering the corrections coming from quantum matter in a
given background. As shown for instance in [403], in the models based on the
semiclassical approximation the mean value of the stress-energy tensor Tµν of
a set of quantized fields interacting with a classical geometry is plagued with
infinities. These divergencies can be removed by a suitable modification of EE
that follows from a renormalization procedure. In order to render the mean
value of Tµν finite, the cosmological constant Λ and Einstein’s constant κ are
renormalized, and a counterterm of the form

△L =
√−g (αR2 + β Rµν Rµν) (E.24)

must be introduced in the Lagrangian 33. The corrections arise from the ultra-
violet behavior of the field modes, which only probe the local geometry, hence
the appearance of geometric quantities. After the elimination of the divergences
and with a convenient choice of α and β, EE with < Tµν > as a source preserve
their form [403]:

Gµν + Λ(ren) gµν = −κ(ren) < T (ren)
µν > . (E.25)

31Since in this case the non-linear terms are always coupled to one or more scalar fields we
shall consider it in Sect. E.3.3.

32As opposed to Lagrangians that are negative powers of R, which are currently being con-
sidered as candidates to explain the acceleration of the universe [308].

33The relevance of this type of series development was discussed also by Sakharov [364].
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Note that such renormalization does not affect the conservation of the energy-
momentum tensor, that is

< T µν(ren) > ;ν= 0. (E.26)

Notice that there is a residual freedom in the constants introduced by the coun-
terterm [300], so they can be chosen in such a way that they cancel the diver-
gencies without eliminating the quadratic contribution to EE (contrary to what
was done in [403]). This more general choice amounts to shifting the constants
as α→ α + η and β → β + γ η [300]. The new equations are

Gµν + η(χµν + γ Zµν) + Λ(ren) gµν = −κ(ren) < T (ren)
µν >, (E.27)

where
1

2
χµν ≡ R(Rµν −

1

4
Rgµν) +R ;µ;ν − gµν�R, (E.28)

and

Zµν ≡ R ;µ;ν −�Rµν −
1

2
(�R +Rαβ R

αβ)gµν + 2Rαβ Rαµβν . (E.29)

Cosmological solutions of Eqn.(E.27) in the case of the FLRW metric were
studied in [301]. For a flat universe, the equations take the form

3

(
ȧ

a

)2

+ 3t2c

{(
ä

a
+

(
ȧ

a

)2
)(

ä

a
−
(
ȧ

a

)2
)
− 2

(
ȧ

a

)(
ä

a
+

(
ȧ

a

)2
)�}

= ρ,

(E.30)

ρ̇+ 3

(
ȧ

a

)
(ρ+ p) = 0, (E.31)

where the characteristic time tc ≡ 1/sqrtc|µ2| signals the moment in which the
corrections play an important role, and µ−2 ≡ −2η(γ +3) (it has dimensions of
L2). For the case of radiation (ρ = ρca

4
c/a

4), we get

H2 + t2c

{(
ä

a
−H2

)2

− 2H

( ...
a

a
−H3

)}
=
ρc
3

(ac
a

)4
, (E.32)

where H = ȧ/a, and ρc = ρ(tc). If we impose the existence of a bounce by the
conditions ab > 0, ȧb = 0, and äb > 0, it follows from this equation that µ−2 > 0.
It as also shown in [301] tc ≤ 3.33× 10−4 sec. in order that the theory does not
conflict with the three classical tests of GR.
Vacuum solutions of Eqn.(E.27) in the FLRW geometry were studied in [296].

Notice that taking the trace of Eqn.(E.27) in the absence of matter we obtain

R̈ + hṘ + σR = 0,

where σ = 1/(2η(1 + γ)), h = d[ln(−g)1/2]/dt. This equation is analogous to
that of a damped harmonic oscillator. Depending on the sign of the parameter
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σ, and considering h > 0, there may be damped oscillations for R around R = 0,
or exponentially decaying or growing solutions [296].
Corrections coming from one-loop contributions of conformally-invariant mat-

ter fields on a FLRW background were studied in [385] (see also [164]). They
allow for nonsingular solutions that are not of the bouncing type since they
describe a universe starting from a deSitter state. A thorough analysis of this
setting was given in [15], where the back-reaction problem for conformally in-
variant free quantum fields in FLRW spacetimes with radiation was studied,
for both zero [15] and non-zero [16] curvature and/or Λ. It was found that de-
pending on the values of the regularization parameters, there are some bouncing
solutions that approach FLRW at late times.

E.2.2. Lagrangians depending on the Ricci scalar

On approaching the singularity, powers of the curvature may be expected to
play an important dynamical role, hence other possible nonlinear Lagrangians
are those belonging to the class defined by

S =

∫ √−g f(R) d4x, (E.33)

where f(R) is an arbitrary function of the curvature scalar, encompassing poly-
nomials as a particular case 34. The problem of the singularity using this type
of Lagrangians has been repeatedly discussed in the literature (see for instance
[88, 31]). The EOM that follows from this action is

f
′

Rµν −
1

2
f gµν −�f gµν + f

′

,µ;ν = 0, (E.34)

where f
′ ≡ df/dR. This equation can be expressed in f and its derivatives as

f
′

Rµν −
1

2
f gµν + f

′′

(R,µ;ν −�Rgµν) + f
′′′

(R,µR,ν −R,λR
,λ gµν) = 0, (E.35)

or, using the trace,

f
′

(
Rµν −

1

4
Rgµν

)
+f

′′

(
R,µ;ν −

1

4
gµν�R

)
+f

′′′

(
R,µR,ν −

1

4
R,λR

,λ gµν

)
= 0.

(E.36)

34More general cases may include terms proportional to RµνR
µν . In principle a term

RαβγδR
αβγδ should also be included in the action, but the existence of a topological

invariant yields

δ

∫
(RαβγδR

αβγδ − 4RαβR
αβ +R2)

√−g d4x = 0,

in such a way that the Riemann-squared term can be omitted.
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The particular example given by

f(R) = R + αR2 (E.37)

was studied by many authors [362, 184, 274]. The equations of motion for the
Lagrangian introduced in Eqn.(E.37) in the presence of matter are

(1 + 2αR)Rµν −
1

2
(R + αR2) gµν + 2α(R,µ;ν −�Rgµν) = −Tµν . (E.38)

If we restrict to ultra-relativistic matter (p = ρ/3) the 0 − 0 component of this
equation in the case of the FLRW geometry yields

ρ =
1

3
θ2 +

3ǫ

a2
− 2αθ̇

(
θ̇ +

2

3
θ2
)
+

18ǫ2 α

a4
+

4ǫ α

a2
+ 2αθ Ṙ, (E.39)

where R = 2θ̇ + 4 θ2/3 + 6ǫ/a2, and θ = 3ȧ/a. At the point where the bounce
occurs, θb = 0 and θ̇b > 0, and Eqn.(E.39) reduces to

ρb = − 2αθ̇b
2
+

3ǫ

a2b

(
1 +

6αǫ

a2b
+

4α

3

)
. (E.40)

Let us take as an example the case in which ǫ = 0. If we want to have a minimum
with positive energy density, it follows from Eqn.(E.40) that α < 0. As shown
in [362], such a choice for the action of the gravitational field admits solutions in
the FLRW framework that allow a regular transition from a contracting to an
expanding phase. Although negative values of α remove the initial singularity,
it was shown in [362, 184] that the solutions with α < 0 do not go to the
corresponding FLRW solution (a ∝ t1/2) for large t.
A theory that generalizes that defined by Eqn.(E.37), namely

f(R) = R + αRn

was studied in [361]35. It was found that the FLRW solution for n = 4/3 and
p = ρ/3 is regular for all values of t, and tends to the radiation solution for large
values of t. Later, solutions of this theory with dust as a source were found to
have similar properties in [195].
Another type of corrections, given by the Lagrangian

L = R + Λ+BR2 + CR2 ln |R|, (E.41)

were studied in [196] (with B and C constants). The quadratic and logarithmic
terms are consequences of vacuum polarization [131]. Although this form of the
Lagrangian does not eliminate the singularity in the FLRW solutions, addition
of particle creation effects through a viscosity term does (see Ch.E.5) 36.

35f(R) theories with negative/positive powers of R were first proposed in [306].
36A Bianchi I solution of this theory with and without self-consistent particle production was

considered in [197]. It was shown that particle production quickly isotropizes the model.
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The stability analysis of the FLRW solution in theories with L = f(R) was
performed in [31], along with necessary and sufficient conditions for the existence
of singularities. Eqn.(E.35) in the case of a FLRW geometry in the presence of
matter reduces to [238]

f
′′

ȧ(a2
...
a +aȧä− 2ȧ3 − 2ȧǫ) +

1

6
f

′

a3ä+
1

36
fa4 +

1

18
a4T00 = 0. (E.42)

The argument of the function f is given by

R =
6

a2
(aä+ ȧ2 + ǫ). (E.43)

Assuming that near the bounce the scale factor can be developed in a power
series as

a(t) = a0 +
1

2
a1t

2 +
1

6
a2t

3 + ..., (E.44)

a necessary condition for the bounce was given [31]:

f0a0 + 6a1f
′
0 ≤ 0, (E.45)

where f0 = f(R0), and R0 = −6a−2
0 (a0a1+ ǫ), and it was assumed that T00 > 0.

In the quadratic case given by Eqn.(E.37), this condition takes the form

6αǫ2 − a20ǫ− 6αa21a
2
0 < 0. (E.46)

When ǫ = 0, the condition α > 0 is regained, but there are other possibilities
when ǫ = 1,−1 [31]. In the same vein, but without using a series development,
conditions for a bounce in f(R) theories were studied in [95] 37. The basic
equations are, that follow from Raychaudhuri’s equation and the Gauss-Codazzi
equation are

äb
ab

= −ρb
f ′
b

+
fb
f ′
b

,

R = 6

(
äb
ab

+
ǫ

a2b

)
.

These equations were used in [95] to analyze a possible bounce in the theories
given by f1(R) = Rn, f2(R) = R+αRm, f3(R) = exp(λR). Bounces for ǫ = ±1
are possible in the case of f1. This case can describe an “almost-FRLW” phase
folowed by an accelerated phase if n > 1 and n is odd for ǫ = −1 and R > 0.
The same happens with n even and n < 0 with R > 0 or 0 < n < 1 with R < 0,
where in the second case n can be only rational. For f2, closed bounces are
allowed for every integer value of m (often together with open bounces). For
m rational, closed bounces are not allowed in general for 0 < m < 1. For m

37Bounce solutions were also shown to exist in orthogonal spatially homogeneous Bianchi
cosmologies in f(R) = Rn in [188].
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rational with even denominator there is no closed bounce for (m > 1, α < 0)
and no bounce at all for negative m and α. In the case of f3, one of the
following two conditions must be satisfied in order to have a bounce: λ > 0 and
Rb > ln(2ρb)/λ, or λ < 0 and Rb < ln(2ρb)/λ.
Some exact solutions have been recently found in [107] for the theory defined

by f(R) = R1+δ. For the vacuum case with ǫ = 0, there is bouncing (entirely
due to the dynamics of the theory), for 0 < δ < 1/4. There are vacuum solutions
for δ = 1/2 and ǫ 6= 0, are given by

ds2 = dt2 − (κ− κt2 ± t4)
(

dr2

1− ǫr2 + r2dΩ2

)
.

This solution exhibits a bounce for κ > 0. Bouncing solutions were also obtained
for a perfect fluid with p = (γ − 1)ρ in the case δ = 1/(3γ − 1) 38.
We would like to close this section by pointing out that Eqn.E.42 illustrates

the fact that the flatness problem is not a priori a problem in theories other
than GR (no definite behavior of |Ω− 1| with time follows from E.42).

Saturation

An interesting idea was proposed in [238] to limit the curvature by adding terms
in the Lagrangian, following the lines that Born and Infeld [71] devised to avoid
singularities in electromagnetism. The Born-Infeld Lagrangian, given by

LBI = β2

[√
1− H 2 − E 2

β4
− 1

]
(E.47)

is such that the invariant H 2 − E 2 cannot take values higher than β4. The
fact that it takes more and more energy to increment the field when it takes
values near β2 is a phenomenon called saturation 39. A similar cutoff may be
postulated for the curvature tensor when quantum gravitational fluctuations
become non-negligible, that is (presumably), when

R ≈ ℓ−2
P l ≈ 1066cm−2.

In [238], non-polynomial Lagrangians f(R) were considered such that they re-
duce to R when R << ℓ−2

P l , and required that f(R) → constant for R → ∞.
This condition is of course not enough to determine the Lagrangian, but a qual-
itative guess can be made. A typical Lagrangian that fulfills the above given
conditions is

f(R) =
R

1− ℓ2P lR
. (E.48)

38Cyclic solutions were obtained in the case δ = (3γ − 4)/(2(7− 3γ)) for a convenient choice
of the integration constants.

39This is analogous to the fact that it takes an infinite amount of energy to accelerate a mass
moving with v ≈ c in special relativity.

2039



An approximate solution of the EOM (E.42) for (E.48) by a development as a
power series of t for ǫ = 0 was built in [141], the solution being non-singular
though strongly dependent on the non-linearities of the chosen Lagrangian.
The idea of saturation was subsequently explored in [140], where an explicit

nonsingular solution given by

a(t) = σ

(
1 +

β4t2

σ4

)1/4

, (E.49)

was inserted in Eqn.(E.42), where σ is a small parameter. This expression tends
to the radiation-dominated scale factor for β4t2/σ4 >> 1. With this a(t) and
using that R = −3β4σ4/a8, Eqn.(E.42) can be rewritten as an ordinary linear
second-order differential equation for f(R). This equation was integrated for
all the values of the 3-curvature. The dependence of the resulting f(R) on
the chosen form of a(t) was tested in the case ǫ = 0 with that obtained from
a8(t) = 1+ 2(1 + α)t2 + t4, which has the same asymptotic limit of Eqn.(E.49).
The result in this second case is not distinguishable from the first.
A related analysis was carried out in [57], where it was asked that the theory

defined by f(R) be asymptotically free (implying that gravity becomes weak at
short distances, in such a way that pressure may counteract the gravitational
attraction, thus avoiding the singularity), and also ghost-free (so that the bounce
is not caused by negative-energy-density matter) 40. The actions studied in [57]
that satisfy these requirements were specified by 41

f(R) = R +

∞∑

n=0

cnR�
nR, (E.50)

and can be rewritten in terms of a higher-derivative scalar-tensor action:

S =

∫
d4x
√−g

(
ΦR + ψ

∞∑

1

ci�
iψ − (ψ(Φ− 1)− c0ψ2

)
,

from which it follows that ψ = R (from the EOM of Φ). After a conformal
transformation and linearization it follows that the EOM for the scalar fields
are [57]

ψ = 3�φ, φ = 2

( ∞∑

1

ci�
iψ + c0ψ

)

with Φ = eφ. From these we get

(
1− 6

∞∑

0

ci�
i+1

)
φ ≡ Γ(�)φ = 0,

40For the relation between f(R) theories and ghosts, see [104].
41It was shown in [57] that polynomial actions in R do not satisfy these requirements.
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and the scalar propagator is

G(p2) ∝ 1

Γ(−p2) .

It is precisely the function Γ that controls the absence of ghosts and the asymp-
totic properties of the theory, which was parameterized in [57] as Γ(−p2) =
eγ(−p

2), with γ analytic. To actually show the existence of bouncing solutions
with the properties mentioned above, the scale factor

a(t) = a0 cosh

(√
ω

2
t

)
,

was imposed in the equation for G00 written in terms of Γ and its derivatives,
and compared with the r.h.s. composed of radiation and cosmological constant,
thus yielding the following constraints on Γ:

Γ′(ω) =
2

3
Γ′(0)− 1

3ω
,

2ωΓ′(ω)− 1 ≥ 0

(the latter coming from demanding that the bounce be caused by the nonlin-
earities, and not by the radiation energy density). The authors go on to show
that the kinetic operator defined by

γ(ω) = k1ω − k2ω2 + k4ω
4,

where ki are constants, satisfies the constraints and has the correct Newtonian
limit. So a bouncing solution that is ghost and asymptotically free exists for the
theory defined by Eqn.(E.50)42, although the Lagrangian in the original variable
R was not exhibited.

E.2.3. The limiting curvature hypothesis (LCH)

A different proposal to deal with the singularity problem in the higher-order-
curvature scenario is to adopt the limiting curvature hypothesis, introduced by
M. Markov [278] as the limiting density hypothesis 43. The LHC postulates the
existence of a maximum value for the curvature, in such a way that

R2 < ℓ−4
P l , RµνR

µν < ℓ−8
P l , WαβγδW

αβγδ < ℓ−8
P l ,

etc, and that any geometry must approach a definite nonsingular solution (typ-
ically the de Sitter solution) when the limiting curvature is reached. This auto-
matically guarantees that all curvature invariants are finite [279]. A nonsingular

42See also [58].
43For boucing solutions that implement this hypothesis through modifications of the EOS,

see [359].
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higher order theory was constructed in [292] in which every contracting and spa-
tially flat, isotropic universe avoids the big crunch by ending up in a deSitter
state enforced by the LCH, for all initial conditions and general matter content
44. The action used in [292] was the linear action plus a non-linear term I2 with
the property that

I2(gµν) = 0⇔ gµν = gDSµν , (E.51)

and enforced that I2 → 0 for large curvatures using an auxiliary field (see
below). In a subsequent paper [75], the method was applied to an isotropic,
homogeneous universe, both in vacuum and in the presence of matter. The
solutions corresponding to ǫ = 1 display a deSitter bounce. In the case in which
matter is present, it is shown that its coupling to gravity is asymptotically free.
Later, the model was generalized to include a dilaton field [77], in which case it
admits flat bouncing solutions. The starting point is the dilaton gravity action
with an added non-linear term (I2) times a Lagrange multiplier ψ subject to a
potential V (ψ):

S = − 1

2κ2

(
R− 1

2
(∇φ)2 + 1√

12
ψ eγφI2 + V (ψ)

)
. (E.52)

The potential is to be tailored from the EOM and the constraint equations in
such a way that I2, given by

I2 =
√

4RµνRµν ,

goes to zero for large curvatures. Notice that this form of I2 satisfies condition
(E.51), so all the curvature invariants are automatically bounded. Restricting
to an FLRW metric with k = 0, the EOM are

ψ̇ = −3Hψ + 6H − 1

H

(
1

2
χ2 + V (ψ)

)
, (E.53)

Ḣ = −V ′(ψ), (E.54)

χ̇ = −3Hχ, (E.55)

with χ = φ̇, and a prime denotes derivative wrt ψ. An example was given in
[77], where

V (ψ) =
ψ2 − 1

16
ψ4

1 + 1
32
ψ4

. (E.56)

was chosen. This potential yields the dilaton gravity action at low curvatures,
enforces that I2 go to zero at large curvatures, and enables a bounce. By means
of a phase space analysis of Eqns.(E.53)-(E.55), it was shown [77] that all the
solutions are non-singular, and that some of them display a bounce either with

44Note that the LFH furnishes in this case a nonsingular universe without bounce.
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or without the dilaton. In particular, the flat bouncing solutions with a non-
zero dilaton interpolate between a contracting dilaton-dominated phase and an
expanding FLRW epoch, thus avoiding the graceful exit problem of pre-big-bang
cosmology (see below).
One obvious drawback of the LCH is that the non-linear terms are not dictated

by first principles: they are chosen in such a way as to render the theory finite.

E.2.4. Appendix: f(R) and scalar-tensor theories

Higher-order Lagrangians can be related to scalar-tensor gravity (see for instance
[393]). Let us start with the function f(R) is given by

f(R) = R + αR2. (E.57)

The EOM that follow from this Lagrangian is

2αR;µν − (1− 2αR)Rµν + gµν

(
1

2
αR2 +

1

2
R− 2α�R

)
= 0, (E.58)

the trace of this equation being

�R − R

6α
= 0. (E.59)

It was shown in [393] that this theory is equivalent to the one given by the
action

S =

∫ √−g d4x
[
(1 + 2αϕ)R− αϕ2

]
. (E.60)

Varying independently gµν and ϕ in the action given in Eqn.(E.60), one ob-
tains

(1 + 2α)(Rµν −
1

2
Rgµν) +

α

2
ϕ2gµν − 2α(ϕ,µ;ν −�ϕ gµν) = 0, (E.61)

and
2α(R− ϕ) = 0. (E.62)

In turn, as shown in [418] the conformal transformation

g̃µν = (1 + 2αφ) gµν , (E.63)

takes this theory to Einstein gravity with a massive scalar field.
Except in the case in which α vanishes (which is precisely the case in general

relativity) the second equation yields that the scalar field is nothing but the
scalar of curvature. Inserting this result into Eqn.(E.61) one arrives precisely at
Eqn.(E.58). The equivalence can be generalized to functions f(R) (see [414]) 45.
Based on the equivalence, the singularity problem in fourth order theories was
analyzed in [250] for homogeneous cosmological models with a diagonal metric.

45It was later proved that all higher order, scalar-tensor and string actions are conformally
equivalent to general relativity with additional scalar fields which have particular (different
in each case) self-interaction potentials [32].
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E.3. Theories with a scalar field

E.3.1. Scalar field in the presence of a potential

Violations to some of the energy conditions are produced even at the classical
level by some scalar field theories. From the singularity theorems discussed in
Ch. 1, we can expect the existence of bouncing solutions in this scenario 46.
We shall see next examples of avoidance of the singularity in scalar field models
that violate some of the energy conditions, as well as theories with nonminimal
coupling.
A universe filled with radiation and pressureless matter coupled to a classical

conformal massless scalar field was studied in [47]. The coupling was provided
by the action

S = −1
2

∫
(ψ,αψ

,α +
1

6
Rψ2)

√−g −
∫
(µ+ fψ)dτ, (E.64)

where µ is the mass of the particle, f is a coupling constant, and

−f
∫
ψdτ = −f

∫
d4x

[√−gψ
∫
(−g)−1/2δ4(xµ − xµ(τ))dτ

]
,

(this interaction was suggested in [47] as a classical analog of the pion-nucleon
coupling). Assuming that we have a FLRW universe filled with a uniform dis-
tribution of identical µ particles, in the continuum approximation, the field
equation for ψ takes the form

F,η,η + ǫF = −fN, (E.65)

where F = aψ, η is the conformal time, and N = na3=constant is the number
of particles. The calculation of the trace of the total stress-energy tensor from
Eq.(E.64) yields

T α
α = −µn,

so we get for the trace of EE

a′′ + ǫa =
4π

3
Nµ, (E.66)

where the prime means derivative wrt conformal time. Finally the Friedmann
equation is given by

a′2 + ǫa2 =
4π

3
(F ′2 + ǫF 2 + 2Naµ + 2NfF + 2B), (E.67)

where B is a constant that gives the amount of radiation. The system composed
of Eqns.(E.65-E.67) was solved in [47] for all values of ǫ, and it was shown

46The role of scalar fields in Cosmology has been examined for instance in [239].
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that a bounce is possible for the three cases when some relations between the
integration constants are fulfilled. However, physical requirements show that
only the ǫ = +1 solution can bounce provided N2f 2 > 2B. A nice feature of
this solution is that it satisfies the weak energy condition.
Another non-singular universe based on a scalar field was presented in [45].

A closed FLRW model was considered, with a conformally coupled scalar field
φ as matter content, which can be thought as a perfect fluid with comoving
velocity defined by

vµ =
φ,µ

(φ,αφ,α)1/2
.

In this case, the energy density and the pressure are given by

ρ =
1

2
φ̇2 +

1

2
φ2

[(
ȧ

a

)2

+
1

a2

]
+
ȧ

a
φφ̇+ V,

p =
1

6
φ̇2 +

1

3
φ
dV

dφ
+

1

6
φ2

[(
ȧ

a

)2

+
1

a2

]
+

1

3

ȧ

a
φφ̇− V.

EE were written as (
ȧ

a

)2

+
1

a2
=
ρ

6
,

ä

a
+

1

2

(
γ − 2

3

)
ρ = 0,

with p = (γ − 1)ρ. From these equations we get

ä

a
+

(
3

2
γ − 1

)(
ȧ2 + 1

a2

)
= 0.

Introducing the conformal time through dt = a(η)dη, and with the changes of
variables u = a′/a, and u = w′/(cw), with c = 3γ/2− 1, the solution for a(η) is
[45]

a(η) = a0[cos(cη + d)]1/c,

where a0, and d are integration constants, which were fixed resorting to the
limiting curvature hypothesis (see Sect. E.2.3) along with the imposition of a
”prematter phase (starting from the limiting values), followed by a radiation-
dominated era and a matter-domination period afterwards. The constant c is
essentially the parameter of the equation of state of the prematter era, and the
only constant which is not completely determined in the model. potential V was
then reconstructed in terms of the scale factor (assuming that the EOS changes
inthe different eras of the universe) and φ from γ = 1 + p/ρ, and the evolution
of φ was obtained by numerical integration.
More general models, given by solutions of the theory

S =

∫
d4x
√−g{F (φ)R− ∂αφ∂αφ− 2V (φ)},
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in which φ is nonminimally coupled to gravity through F , were studied in [193],
where it was shown that there are bouncing solutions, which were later proved
to be unstable under linear anisotropic perturbations [3]. A phase-space analysis
of the models given by F (φ) = ξφ2 showed the existence of bouncing solutions,
under certain restrictions on the constants of the potential V (φ) = αφ2+βφ4+Λ
[194].
Nonsingular solutions for a scalar field in the presence of a potential were also

studied in [11], for theories defined by

L =
1

2
ωφ̇2 − U(ω),

where ω is determined by dU/dω = 1
2
φ̇2. The existence of a bounce was shown

for a tailored potential given by

U(ω) = λ

(
ω−1 +

1− α
α

ωα/(1−α) − 1

α

)
,

where λ is a constant with dimensions of energy density, and α is a number
parameterising the classes of theories 47. The bounce exists for α < 1/3, and
ǫ = +1. Later, this approach was generalized to Bianchi I cosmologies in [167].
So far we have examined a classical scalar field on a given background. A

quantum scalar field φ(x) in a classical geometry was studied in [286, 316]
where, inspired by the features of the mechanism of spontaneous symmetry
breaking, the authors sought a solution in which the expectation value of φ in
the fundamental state is given by

〈0|φ|0〉 =
√

3

λ

f(η)

a(η)
, (E.68)

where η is the conformal time of an open Friedmann geometry given by

ds2 = a2(η)
[
dη2 − dχ2 − sinh2 χ

(
dθ2 + sin2 θdφ2

)]
, (E.69)

and f is a function to be determined (see below). For a massless field the
equation of motion for the scale factor reduces to

a′′

a
= 1. (E.70)

From the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
σφ4

we obtain the equation of the scalar field φ, given by

φ′′ + 2φ′a
′

a
+ 2σa2φ3 = 0. (E.71)

47This potential interpolates between p = ρ for ρ << λ, and p < 0 for high densities.
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Compatibility of these two equations with the assumption in Eqn.(E.68) yields
the relation

σ =
λ

6
. (E.72)

For the scale factor as function of the Gaussian time t we obtain

a(t) =
√
t2 − L2, (E.73)

where L is a constant and
f ′′ − f + f 3 = 0. (E.74)

By rewriting this equation as a planar autonomous system, it was shown in [286]
that the solution f = 0 is unstable, while the solutions f 2 = 1 are stable under
linear homogeneous perturbations. From the equation for gµν and specializing
for µ = ν = 0 we obtain the value of the constant L in Eqn.(E.73):

L2 =
κ

24σ
(E.75)

which represents the minimum allowable value of the scale factor. From standard
quantum field theory in curved spacetime,

Gµν = −κ(ren)Tµν ,

it follows that E|0〉 = −3L2

a4
< 0, which shows explicitly the expected violation of

the weak energy condition that causes the absence of a singularity in this model.
Note that the gravitational constant in the vacuum state is renormalized:

1

κ(ren)
=

1

κ
− φ2

6
=

12σt2 − κ/2
12σκa2

.

It follows that κren < 0 for t2 < κ
24σ

and κren > 0 for t2 > κ
24σ

, thus showing
that a change in the sign of the gravitational constant can be induced by the
non-minimal coupling of scalar field with gravity, yielding repulsive gravity.
The phenomenon of repulsive gravity can also be generated at a classical level

by means of a non-minimally coupled complex scalar field [368]. The Lagrangian
is given by

L = ∂µφ∂
µφ∗ − σ(φ∗φ)2 − 1

6
R(φ∗φ) + κ−1R + Lm,

where σ is the constant that measures the auto-interaction of φ, and L is the
matter Lagrangian. The EOM following from this Lagrangian are

�φ + 2σφ∗φ2 +
1

6
Rφ = 0,

Gµν = −κ̃(θµν + Tµν),
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where
κ̃ = κ

(
1− κ

6
φ∗φ
)
, (E.76)

θµν =
1

2

(
∂µφ

∗∂νφ+ ∂νφ
∗∂µφ− gµν(∂ρφ∗∂ρφ− σ(φ∗φ)2) +

1

3
gµν�(φ∗φ)− 1

3
(φ∗φ);µν

)
,

and Tµν is the energy-momentum tensor associated to matter. From Eqn.(E.76)
we see that the gravitational constant is renormalized at the classical level by the
scalar field. In fact, as shown in [368], for the open FLRW metric 48 the scalar
field has three vacuum solutions: φ = 0, and φ = ±γ/a(t), where γ is a constant.
Only the nonzero solutions are stable, and they are also more favorable from the
point of view of energy [368]. Since they are inversely proportional to a, it may
be argued that the scalar field was in a nonzero vacuum in the early universe.
Hence,

κ̃ = κ

[
1− a2c

a2

]−1

,

where ac = (κ/12σ)1/2 signals the change of sign of the gravitational interaction.
Nonsingular solutions were obtained in [368] for matter given by radiation (ρ =
ǫ/a4):

a(t) =
̟√
2
cosh t,

where ̟2 = a2c − 2
3
κǫ. This case reduces to the case without matter for ǫ = 0.

E.3.2. Dynamical origin of the geometry

We shall see in this section that a cosmological scenario displaying a bounce
arises in an extension of Riemannian geometry called Weyl Integrable Space-
Time (WIST) [318].
Let us begin by recalling that one of the central hypothesis of General Relativ-

ity is that gravitational processes occur in a Riemannian space-time structure.
This means that there exists a metric tensor gµν and a symmetric connection
Γαµν related by

gµν;α ≡ gµν,α − Γǫαµ gǫµ − Γǫαν gµǫ = 0. (E.77)

In other words, the connection is metric and can be written in terms of the
metric tensor as follows

Γαµν =
{
α
µν

}
≡ 1

2
gαβ[gβµ, ν + gβν, µ − gµν, β]. (E.78)

A direct method to deduce such metricity condition is given by the first or-
der Palatini variation (in which the variation of the metric tensor and of the
connection are independent). The starting point is the Hilbert action:

S[g,Γ] =
∫ √−gR[g,Γ]d4x. (E.79)

48This scenario does not work for the closed case.
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In a local Euclidean coordinate system,

δRµν = δΓαµα;ν − δΓαµν;α, (E.80)

where the covariant derivative represented by a semicolon must be taken in the
non-perturbed background geometry. From this equation it follows that

δL = (Rµν −
1

2
Rgµν)

√−gδgµν +√−ggµνδRµν . (E.81)

Correspondingly

δS =

∫ √−g(Rµν −
1

2
Rgµν)δg

µν

+

∫ {
(
√−ggµǫ);α −

1

2
(
√−ggµν);νδǫα −

1

2
(
√−ggνǫ);νδµα

}
δΓαµǫ.(E.82)

Hence,

(
√−ggµǫ);α −

1

2
(
√−ggµν);νδǫα −

1

2
(
√−ggνǫ);νδµα = 0, (E.83)

and we obtain
(
√−ggµǫ);α = 0. (E.84)

After some algebra it can be shown that space-time has a Riemannian structure,
that is, it obeys the metricity condition,

gµǫ;α = 0. (E.85)

The other equation that follows from the variational principle yields Einstein’s
equations. The lesson we learn from this calculation is that the structure of
the manifold associated to space-time is not given a priori, but may depend on
the dynamics. Surely, we should check whether the addition of matter alters
this feature. The answer is not unique: it depends crucially on the way matter
couples to gravity. There will be no modification to the precedent structure if
we adopt the minimal coupling (that is, if the strong equivalence principle is
valid). However, when the interaction is non-minimal, the geometrical structure
obtained by the Palatini variation is not Riemannian in general. The simplest
way to show this is with an example. Let us take the Lagrangian which describes
the non-minimal interaction of a scalar field with gravity in the form:

Lint =
√−g R f(ϕ). (E.86)

Following the procedure sketched above we get:

δSint =

∫ √−g f (Rµν −
1

2
Rgµν)δg

µν

+

∫ {
(
√−g f gµǫ);α −

1

2
(
√−g f gµν);νδǫα −

1

2
(
√−g f gνǫ);νδµα

}
δΓαµǫ,(E.87)
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and it follows that {√−gf(ϕ) gµν
}
;ǫ
= 0. (E.88)

This equation shows that the covariant derivative of the metric tensor is not
zero but

gµν;α = Qµνα, (E.89)

where Qµνλ = −(ln f),λ gµν . Taking the cyclic permutation of Eqn.(E.3.2) yields

Γλµα =
{
λ
µα

}
− 1

2
[Qµ

λ
α +Qλ

αµ −Qαµ
λ]. (E.90)

The equation
gµν;α = −(ln f),λ gµν . (E.91)

shows that the structure generated by the Lagrangian (E.86) using the Palatini
variation is not Riemannian but, as we shall see in the next section, a special
case of Weyl geometry.

WIST (Weyl Integrable Space Time)

A Weyl geometry is defined by the relation [416]

gµν;α = ϕαgµν . (E.92)

This equation implies that there is a variation of the length ℓ0 of any vector
under parallel transport, given by

∆ℓ = ℓ0ϕµ∆x
µ. (E.93)

This property has the undesirable consequence that the measure of length de-
pends on the previous history of the measurement apparatus, as pointed out by
Einstein in the beginning of the past century in a criticism against Weyl’s pro-
posal for the geometrization of the electromagnetic field [335]. Einsteins remark
led to the abandonment of this type of geometry. However, there is just one
particular case in which this problem disappears: the so-called Weyl integrable
spacetime (WIST). By definition, a WIST is a particular Weyl spacetime in
which the vector Wµ is irrotational:

ϕµ ≡ ∂µϕ.

It follows that in a closed trajectory
∮

∆ℓ = 0, (E.94)

which solves the critic raised by Einstein. From the definition given in Eqn.(E.92)
it follows that the associated connection is given by

Cα
µν =

{
α

µν

}
− 1

2
(ϕµδ

α
ν + ϕµδ

α
ν − ϕαgµν) . (E.95)
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Using this equation we can write the contracted curvature tensor R
(W )
µν in terms

of the tensor Rµν of the associated Riemann space constructed with the Christof-

fel symbols
{

α
µν

}
. We obtain

R(W )
µν = Rµν − ϕ,µ;ν −

1

2
ϕ,µϕ,ν +

1

2
ϕ,λϕ

,λgµν −
1

2
�ϕ gµν (E.96)

where the covariant derivatives are taken in the associated Riemannian geometry
and� is the d’Alembertian in the Riemannian geometry. Thus, for the curvature
scalar,

R(W ) = R− 3�ϕ+
3

2
ϕ,λϕ

,λ (E.97)

in which R is the curvature scalar of the associated Riemannian spacetime.
The expressions in Eqns.(E.96) and (E.97) are very similar to those obtained

by a conformal mapping of a Riemannian geometry as shown in Sec.E.3.4.

WIST duality: the Weyl map

A Weyl integral spacetime is determined by both a metric tensor and a scalar
field. In [416], Weyl introduced a generalization of the conformal mapping,
which he called a gauge transformation, given by

gµν → g̃µν = eχgµν , ϕ→ ϕ̃ = ϕ+ χ, (E.98)

in which χ is an arbitrary function. Under such transformations the affine
connection and the curvature and Ricci tensors are invariant:

C̃α
µν = Cα

µν ,

R̃(W )α
βµν = R(W )α

βµν ,

R̃(W )
µν = R(W )

µν .

Note however that this is not the case for the scalar of curvature, which changes
as

R̃(W ) = e−χR(W ).

This property has been used to construct gauge-invariant theories, as we shall
see next.

Invariant Action in WIST

From the behavior of the geometric quantities under a Weyl map, it is not
difficult to write an action that is invariant under the transformation given by
Eqns.(E.98):

SW =

∫ √−g e−ϕR(W ). (E.99)
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This Lagrangian can be rewritten in terms of the associated Riemannian quan-
tities as follows:

SW =

∫ √−ge−ϕ
(
R− 3�ϕ+

3

2
ϕ,λϕ

,λ

)
. (E.100)

After some algebra, we arrive (up to a total divergence) at the result

SW =

∫ √−ge−ϕ
(
R− 3

2
ϕ,µϕ

,µ

)
. (E.101)

Note that the kinematical term of the scalar field for the scalar field appears
with the “wrong” sign. This can be interpreted as a ghost field term hidden in
the WIST structure.

A particular case of WIST Duality

Let us go one step further and add to the above Lagrangian a kinematical term:

SK =

∫ √−ge−ϕϕ,µϕ,µ. (E.102)

If we restrict to the case in which χ (given in Eqn.(E.98)) is a functional of ϕ,
it follows that the complete action

S =

∫ √−g e−ϕ(R(W ) + β ϕ,µϕ
,µ) (E.103)

is invariant under the restricted map

gµν → g̃µν = e−2ϕgµν , (E.104)

ϕ → ϕ̃ = −ϕ,

which is a special case of the general transformation (E.98). In terms of Riemann
variables,

S =

∫ √−g e−ϕ
[
R +

(
β − 3

2

)
ϕ,µϕ

,µ

]
. (E.105)

There are three invariants of dimension (length)2 that can be constructed
with the independent quantities of a WIST geometry: R(W ), ϕα ϕα, and ϕ

α
;α,

where ϕα ≡ ϕ,α. Now, since the covariant derivative “;” in the WIST spacetime
can be written in terms of the Riemann covariant derivative (denoted by “||”)
as

ϕα;α = ϕα||α − 2ϕ,αϕ,α,

the three invariants reduce to two. The most general action can then be written
as

S =

∫ √−g [R(W ) + ξ ϕα;α], (E.106)
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where ξ is a constant. Independent variation of the metric tensor and the WIST
field ϕ yields

�ϕ = 0, (E.107)

(the operator � is calculated in the Riemannian spacetime) and

R(W )
µν −

1

2
R(W ) gµν + ϕ,µ;ν − 2(ξ − 1)ϕ,µϕ,ν + (ξ − 1

2
)gµνϕ,αϕ

,α = 0. (E.108)

This equation can be rewritten exclusively in terms of the associated Riemannian
structure

Rµν −
1

2
Rgµν − λ2 ϕ,µ ϕ,ν +

λ2

2
ϕ,α ϕ

,α gµν = 0, (E.109)

where

λ2 =
1

2
(4ξ − 3). (E.110)

A nonsingular cosmological model in WIST

Let us now show how a nonsingular cosmological scenario in the WIST frame-
work can be constructed, following [318]. We shall work with the standard form
of the FLRW metric:

ds2 = dt2 − a2(t)
[

dr2

1− ǫr2 + r2 (dθ2 + sin2 θ dϕ2)

]
, (E.111)

As in the case of a standard scalar field, the WIST configuration can be repre-
sented by a perfect fluid, so that Eq.(E.109) becomes Einsteins equation for a
perfect fluid with vµ = δµ0, energy density ρϕ and pressure pϕ, given by

ρϕ = pϕ = −1
2
λ2 ϕ̇2 (E.112)

In this interpretation, the WIST structure is equivalent to a Riemannian geom-
etry, satisfying the equations of General Relativity with a perfect fluid having
negative energy density as a source. The gauge vector ϕλ for this geometry
becomes

ϕγ = ∂λϕ(t) = ϕ̇ δ0λ , (E.113)

where the dot denotes differentiation with respect to the time variable. Use of
Eq.(E.107) yields a first integral for the function ϕ(t):

ϕ̇ = γa−3, (E.114)

where γ = constant. In turn, EE (E.109) for the Friedman scale factor a(t) are

ȧ2 + ǫ+
λ2

6
(ϕ̇a)2 = 0, (E.115)

2a ä+ ȧ2 + ǫ− λ2

2
(ϕ̇a)2 = 0 , (E.116)
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where ǫ is the 3-curvature parameter of the FLRW geometry. From Eqn.(E.115)
we see that ǫ = −1. Combining Eqns.(E.114) and (E.115) we get the funda-
mental dynamical equation

ȧ2 = 1−
[a0
a

]4
, (E.117)

with a0 = [γ2λ2/6]1/4. Before entering into the details of the solution of the sys-
tem of structural and dynamical equations (E.115) and (E.114), let us comment
some of the consequences of this cosmological model and list some interesting
results.

Features of the model

An immediate consequence of Eq.(E.117) is that the scale factor a(t) cannot
attain values smaller than a0. Let us consider a time reversal operation and
run backwards into the past of the cosmic evolution. As the cosmic radius a(t)
decreases, the temperature of the material medium grows. In Hot Big Bang
models such increment is unlimited; in the present theory, on the other hand,
there is an epoch of greatest condensation in the vicinity of the minimum radius
a0. Close to this period, there occurs a continuous “phase transition” in the ge-
ometrical background: a Weyl structure is activated, according to Eq.(E.114):
the Universe attains the minimum radius a0 at (t = 0), and consequently an un-
bounded growth of the temperature is inhibited. Notice that since the Universe
had this infinite collapsing era to become homogeneous, in the present scenario
the horizon problem of standard cosmology does not arise.
For very large times, the scale factor behaves as a ∼ t. Thus, asymptotically,

the geometrical configuration assumes a Riemannian character (since ϕ̇ → t)
in the form of a flat Minkowski space (in Milne’s coordinate system). Conse-
quently, in the present model the evolution of the universe may be started by a
primordial instability of Minkowski spacetime at the remote past, due to Weyl
perturbations of the Riemann structure through Eq.(E.91). In order to pre-
scribe the behavior of these perturbations, knowledge of the time dependence
of the gauge vector ϕλ is required. Since the WIST function ϕ̇ has a maximum
at t = 0, the largest deviation of the Riemannian configuration corresponds to
the epoch of greatest contraction near to the value a0.

Stability of the solution

Among the difficult questions concerning bouncing Universes, one may count
the problem of their survival with respect to eventual metric perturbations (see
Sect.(E.11)). We shall show that during the stage of greatest condensation the
WIST model of the Universe is stable. Applying the homogeneous perturbations

ϕ→ ϕ+ δϕ,

a→ a+ δa,
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to Eqs.(E.114) and (E.115), one obtains

δϕ̇ = −3γ
a4

δa,

δȧ ∼ 2
a40
a5ȧ

δa.

Hence,

δϕ̇ = − 9ȧ

γλ2
aδȧ,

δȧ

δa
∼ a−3[a4 − a40]−

1
2 .

Far from a0 (i.e., for large t) we have a >> a0; then,

δȧ

δa
∼ a−5,

da ∼ dt ,

so with (δa)i being the initial spectrum of perturbations, one obtains

δa ∼ (δa)i exp[a
−4].

The solutions of the system Eqs. (E.114) and (E.115) are therefore stable against
metric perturbations in the course of the infinite collapsing phase.

The exact solution

No closed solution can be obtained in terms of the cosmological time, so it is
convenient to move to conformal time η, in which case the solution is easily
shown to be

a(η) = a0
√

cosh 2(η − η0), (E.118)

where η0 is an integration constant. The following qualitative plot shows the
difference between this bouncing solution and the radiation-dominated model
in standard cosmology. The scale factor has a minimum for a = a0, which
corresponds to η = η0. Thus the Universe had a collapsing era for η < η0,
attained its minimum dimension at η = η0, and thereafter initiated an expanding
era. Both the collapse and the expansion run adiabatically, i.e., at a very slow
pace.
The correlate behavior of the Hubble expansion parameterH ≡ (ȧ/a) helps to

understand the model (Fig. E.2). Indeed, the Hubble parameter H is a smooth
function of the conformal time η and does not diverge at the origin of the
expanding era; quite on the contrary, it vanishes at η = η0. The corresponding
evolution of the Cosmos may be outlined as follows: the Universe stays for a long
period in a phase of slow adiabatic contraction, until H attains its minimum
value. Then an abrupt transition occurs: a fast compression turns into a fast
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Figure E.1.: The qualitative plot shows (in conformal time) the scale factor for
the bouncing model given by Eqn(E.118, and the scale factor for
radiation in the SCM, a ∝ η.
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Figure E.2.: Plot of the Hubble parameter in conformal time for a0 = 1.
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expansion up to the maximum of H , and afterwards the expansion proceeds
in an adiabatic slow pace again. While this image supplies a picture of the
behavior of an Universe driven by ϕ(t), it is however incomplete, due to the fact
that the production of large amounts of matter and entropy has been neglected.
This topic will be discussed in Sect.E.3.2).

The WIST function ϕ(t): structural transitions

According to the basic conception of the scenario presented above, the WIST
function ϕ(t) governs the cosmic evolution. Taking into account the solution
Eq.(E.118) for the scale factor a(t), the first integral equation (E.114) yields for
ϕ(t) the expression

ϕ =
γ

2a20
arccos

[a0
a

]2
. (E.119)

The behavior of ϕ(t) is qualitatively portrayed in Fig. E.3, along with ϕ̇. Note
that when a → ±∞ (i.e., for large times), ϕ → ±γπ/4a20 =constant, which is
consistent with the assumption that the Universe originated from a Minkowskian
“nothing” state. The behavior of the time derivative ϕ̇ = γ/a3, which appears
in Eq.(E.112) of the energy density ρϕ of the “stiff matter” state associated to
the WIST field is also shown in Fig.E.3. Since this function has a strong peak

0

1

η

Figure E.3.: Plot of ϕ (full line) and ϕ̇ (dotted line) in conformal time for a0 = 1.

in the neighborhood of the minimum radius a0, the greatest deviation from the
Riemannian configuration happens at this point. In this sense, a sort of ”struc-
tural phase transition” takes place when the Universe approaches its maximally
condensed state. The increase of the (negative) energy of the WIST “fluid”
precludes the collapse to a singularity, reversing the cosmic evolution into an
expansion. Note that the “kinky” aspect of the behavior of the WIST func-
tion ϕ(t) in Fig.E.3 suggests a similarity between the Weyl structural transition
described above and the propagation of instantons in Euclideanized models of
quantum creation (see Eqn.(E.117)).
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WISTons and anti-WISTons: On the geometrization of instantons

In the derivation of the solution of the WIST structural function ϕ(t) (given by
Eq.(E.119)), no attention was paid to the sign of the constant γ. Since the only
information we have about γ is that γ2 = 6a40/λ

2, according to Eqs.(E.114) and
(E.117), γ can be either positive or negative:

γ(±) = ±
√
6
a20
|λ| .

Hence, Eqns.(E.114) and (E.119) actually yield two equations, as follows:

ϕ(±) = ϕ
(±)
0 arccos

[a0
a

]2
, (E.120)

ϕ̇(±) =
γ(±)

a3
, (E.121)

in which ϕ
(±)
0 = γ(±)/2a20 = ±

√
3/2 |γ|−1. Thus the amplitude of the solutions

ϕ(±) depends exclusively on the dimensionless parameter ξ (see Eqn.(E.110)).
The plot of the WIST functions ϕ(−)(t) and ϕ̇(−)(t) is given by the mirror image
of Fig.E.3 with respect to the horizontal axis. Note, however, that the energy
density ρϕ of the “stiff matter” state associated with the WIST field ϕ(t) is the
same in both cases, since from Eqns. (E.112) and (E.114) we have

ρϕ = −λ
2

2
ϕ̇2 = −3

[
a40
a6

]
. (E.122)

Thus, in spite of the fact that the pairs of WIST functions (ϕ(+), ϕ̇(+)) and
(ϕ(−), ϕ̇(−)) have different characteristics, they induce the same type of cosmo-
logical evolution. Their only distinction, in fact, is connected to length varia-
tions, since according to Eq.(E.93) one now has ∆L(±) = Lϕ̇(±)∆t.
It is interesting to observe that the system is invariant with respect to the

time reversal operation t → (−t) if ϕ(+) is concurrently mapped into ϕ(−) and
reciprocally. In this sense, the WIST instanton-like functions ϕ(+) and ϕ(−) may
be called “WISTon” and “anti-WISTon” solutions, respectively, since an anti-
WISTon may be described as a WISTon running backwards in time. According
to Eq.E.107, WISTons are defined up to an additive constant.
A closer inspection of the equations governing the behavior of ϕ(t) reveals

an instanton-like behavior typical of nonlinear theories of self-interacting scalar
fields. Of course, the root of such nonlinearity is the fact that ϕ(t) is taken as
the actual source of the curvature of the metric structure, which in turn modifies
the D’Alembertian operator � due to the introduction of ϕ-dependent terms.
A direct way to clarify this issue is to make explicit, by means of a change of
variables, the hidden nonlinearity of the system of equations of motion involving
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the scale factor a(t) and the WIST function ϕ(t). Define the new variable
s(t) ≡ ϕ̇(t). Using Eqns. (E.107) and (E.114), we have

{
ṡ+ 3γa−4ȧ = 0 ,
a3 − γs−1 = 0.

(E.123)

Taking s(t) to represent a generalized coordinate associated with a one-particle
dynamical system yields the conservation equation

1

2
ṡ2 + V (s) = 0 , (E.124)

in which the associate potential V (s) is given by

V (s) =
9

2γ2

[
a40 s

4 − γ 4
3 s

8
3

]

=
3λ2

4

[
s4 − b2s 8

3

]
, (E.125)

with b2 = 6λ−2γ2/3. Thus the evolution of field s is equivalent to a unit mass
particle moving in a potential with vanishing total energy. Due to the nonlinear
character of this potential, the instanton-like aspect of functions ϕ(±)(t) is not
surprising. Figure E.4 shows the behavior of V (s). The potential vanishes at s =

0 and at s
(±)
B = γ(±)a−3

0 its extrema are at s = 0, and at s
(+)
m = (2/3)3/4γ(±)a−3

0

(which are minima). However, the system cannot remain at the stable states

V (s
(±)
m ) =

(
− 2

3

)
γ2a−8

0 , since in this case ṡ 6= 0; this in turn implies, of course,
a nontrivial, evolving cosmic configuration. This nonlinear scheme provides a

0

V

s

Figure E.4.: Qualitative plot of V (s).

succinct picture of the evolution of the Universe: its development is initiated
at s = 0 (which corresponds to Minkowski space time at t → −∞), attains its

minimum radius a(t = 0) = a0 at either s
(+)
B or s

(−)
B and returns back to s = 0

(which now corresponds to a Minkowski spacetime at t → +∞). According
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to whether the system proceeds along the right or the left branches (i.e., from

s = 0 to s
(+)
B or s

(−)
B ) of the figure, the cosmic evolution is driven by a WISTon

or an anti-WISTon, respectively.
The appearance of instanton-like configurations is a direct consequence of the

fundamental dynamical equation (E.117), in combination with the “structural”
equation (E.114) which prescribes the degree of “Weylization” of space time.

Weylization

We shall see next that the “structural transitions” discussed above are equivalent
to a quantum tunnelling process in models of quantum creation from “nothing”.
Consider a generic Einstein equation for a Friedman scale factor,

ȧ2 = −ǫ+ 1

3
ρa2 , (E.126)

It was shown in [108] that a semiclassical description of a quantum tunnelling
process is given by the bounce solutions of Euclideanized field equations, i.e. ,
of field equations in which the time parameter t is changed into (−it). Applying
such an Euclideanization procedure to Eq.(E.126), one obtains

ȧ2 = +ǫ− 1

3
ρa2 . (E.127)

In the case of an ǫ = +1 universe driven by a (positive) cosmological constant
Λ = 3ς2 this approach was used in [409] to obtain, instead of the classical de
Sitter solution, namely

a(t) =
1

ς
cosh(ςt),

the solution

aE(t) =

(
1

ς

)
cos(ςt) , (E.128)

corresponding to a de Sitter instanton – a “kink” configuration– propagating
with negative classical energy, which bounces at the classical turning point a =
a0 = (1/ς) interpreted as representing the tunnelling to classical de Sitter space
from “nothing.”
Now consider Eqn.(E.126) in the case of a closed Universe driven by the energy

density ρ = 3[a40/a
6]. The euclideanized version of Eq.(E.127) gives

ȧ2 = 1−
[
a40
a4

]
.

But this is precisely the fundamental dynamical equation (E.117) of the WIST
cosmological scenario. In this way, an equivalence is established between the
Euclideanization of a closed Universe model driven by a positive energy density
and a “structural transition” to a Weyl configuration which results in an open
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Universe model driven by a “stiff matter” state of negative energy. Just as in
models of quantum creation the propagation of an instanton is seen to repre-
sent the tunneling of the Universe from a primordial quantum “nothing” state,
in the present scenario the propagation of a WISTon (i.e., a deviation of the
Riemannian structure) is tantamount to the development of the Universe from
a primordial empty Minkowski space.
It has been argued that solutions obtained through Euclideanization are in

fact non-realistic, since they are to be interpreted as instantons, field configura-
tions which tunnel across a classically forbidden region. Other authors endorse
the view that such solutions correspond to an actual primordial phase of the
cosmic evolution in which the basic Lorentzian nature of spacetime is changed
into an Euclidean one. According to the present model, a different interpreta-
tion may be ascribed to these solutions, since an enlargement of the spacetime
structure to a Weyl configuration – in which the geometry is characterized by
the pair (gµν , ϕλ) of fundamental variables – supplies, at least in a particular
case, the same basic behavior. It then becomes possible to reconcile the oppos-
ing interpretations of an “abstract soliton configuration” [136] and of a truly
observable Euclidean cosmic phase [207]. The WIST solution is observable,
whereas its basic nature is always Lorentzian. It is the Riemannian character
of spacetime structure that results altered; allegorically, the choice is no longer
Euclid or Lorentz, but rather Riemann or Weyl.

Solution with matter generation

We have mentioned above that the model must be improved by taking into
account matter creation. A non-singular solution in WIST that incorporates the
effect of the creation of matter on the geometry was studied in [365]. Friedmann
equation in conformal time is given by

a′2 − a2 = −λ
2

6
(ϕ′a)2 +

a4

3
ρm, (E.129)

while the second EE is

−3
(
2
a′′

a3
− a′2

a4
− 1

a2

)
= ρm + 3ρϕ. (E.130)

The conservation of the stress-energy tensor in the case of ultra-relativistic mat-
ter is

(a4ρm)
′ +

1

a2
(a6ρϕ)

′ = 0. (E.131)

A particular solution to these equations that describes creation of relativistic
matter only around the bounce, and enters a radiation phase with a constant
scalar field in a short time is given by the expression [365]

a(η) = β
√

cosh(2η) + k0 sinh(2η)− 2k0(tanh η + 1), (E.132)
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with β = a0/
√
1− k0, and 0 < k0 < 1/7. The dependence of ϕ on η can

be obtained from Eqns.(E.129) and (E.130). An asymmetry is to be expected
both in the scale factor and in ϕ, since the evolution of this universe starts
from the vacuum and enters a radiation dominated epoch. This is pictured in
Fig.E.5. Notice that since the scalar field tends rapidly to a constant value, the
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Figure E.5.: Plot of a and ϕ for k0 = 1/7 and a0 = 0.93, values chosen by
imposing that the solution in Eqn.(E.132) enters the radiation era
for t ≈ 10−8 sec.

production of matter (controlled by ϕ′, see Eqn.(E.131)) stops soon, and the
model enters a radiation phase without the need of a potential. In this sense,
this solution describes a hot bounce, as opposed to cold bouncing solutions,
which do not enter the radiation era unless they are heated up [185]. Another
nice feature of this solution is that the scalar field (formally equivalent to the
dilaton of string theory) goes automatically to a constant value for η → ∞, in
such a way that the solution could be taken as the leading order of a perturbative
development (as is the case in string theory). Again, no potential was needed
in order to display this feature.

E.3.3. Scalar-tensor theories

Scalar-tensor theories are a generalization of the Brans-Dicke Lagrangian [80],
in which the constant appearing in the kinetic term of the scalar field φ becomes
a function of φ. Among the possible Lagrangians to describe these theories, one
possibility is [386]

L = −f(φ)R +
1

2
φ,µφ

,µ + 16πLmatter, (E.133)

where the scalar field φ couples non-minimally with the curvature through f(φ).
With the redefinition ϕ = f(φ), the Lagrangian becomes

L = −ϕR +
ω(ϕ)

ϕ
ϕ,µϕ

,µ + 16πLmatter, (E.134)
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with ω(ϕ) = 1
2
f/f 2

ϕ and fϕ ≡ df/dϕ. Brans-Dicke theory is a special case of this
Lagrangian, f(φ) ∝ φ2 which entails ω =const. This Lagrangian also describes
the gravity-dilaton sector of low-energy string theory for ω = −1 [121]. The
differences between the two Lagrangians have been analyzed in [256]. Following
the results of the discussion presented there, we shall use Eqn.(E.134) as the
definition of scalar-tensor theories.
The equations of motion corresponding to Eqn.(E.134) are

Rµν = −
1

ϕ
(Tµν −

1

2
gµνT )−

ω(ϕ)

ϕ2
ϕ,µϕ,ν −

1

ϕ
ϕ,µ;ν −

1

2ϕ
gµν�ϕ, (E.135)

[3 + 2ω(ϕ)]�ϕ = T − ωϕϕ,µϕ,µ. (E.136)

Eqn.(E.135) suggests that it may be possible to find solutions in which matter
satisfies SEC, but the whole r.h.s. is such that Rµνv

µvν ≥ 0 49. This implies,
via the singularity theorem given in Sect.(E.1.1) that nonsingular solutions may
exist in scalar-tensor theories. Using Eqn.(E.135), the inequality Rµνv

µvν ≥ 0
translates for the flat FLRW case and EOS p = λρ to

− 1

ϕ
(1 + 3λ)ρ

ω + 2

2ω + 3
− ϕ̇2

ϕ

(
ω

ϕ
− ω′

2(2 + 3ω)

)
− ϕ̈

ϕ
≥ 0. (E.137)

Solutions satisfying this constraint, and hence exhibiting a bounce, have been
presented in [34], for ǫ = 0 in the cases of vacuum and radiation (for which
T = 0, see r.h.s. of Eqn.(E.136)) 50. With these restrictions, Eq.(E.136) written
in conformal time takes the form

ϕ′′ +
2a′

a
ϕ′ = − ϕ2ωϕ

3 + 2ω
, (E.138)

which integrates to

ϕ′a2 =

√
3A√

2ω + 3
, (E.139)

where A is a constant. Introducing the variable y = ϕa2 and using Eq.(E.139),
the Friedmann equation takes the form

y′2 = 4Γy + A2, (E.140)

(Γ ≥ 0 is a constant coming from energy conservation) yielding for y(η),

y(η) = A(η + η0) (E.141)

in the case of vacuum, and

y(η) = Γ(η + η0)
2 − A2

4Γ
(E.142)

49The same happens in some wormhole configurations in Brans-Dicke theory. See [13].
50A shadow of doubt has been cast on these results in [229], where it was shown that gravitons

would still see a singularity, even if the rest of matter does not.
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in the case of radiation. Dividing now Eq.(E.139) by y = ϕa2 we obtain

∫ √
2ω(ϕ) + 3

ϕ
dϕ =

√
3A

∫
dη

y(η)
. (E.143)

If this equation is such that it yields ϕ = ϕ(η), we could obtain a(η) from
y = ϕa2. To integrate Eq.(E.143), we need to specify the function ω(ϕ). The
choice in [34] was

2ω(ϕ) + 3 = 2β

(
1− ϕ

ϕc

)−α
, (E.144)

where α, β > 0 and ϕc are constants. With this choice of ω, Eq.(E.143) can be
solved for ϕ(η) in the cases α = 0 (which corresponds to Brans-Dicke theory),
α = 1 and β = −1

2
(which defines a theory introduced by Barker [30]), and

α = 2. The latter was studied in [34]. The solutions for the vacuum case are
given by

a(η)2 =
A(η + η0)(1 + (η + η0)

λ)

ϕc(η + η0)λ
(E.145)

ϕ(η) =
ϕc(η + η0)

λ

1 + (η + η0)λ
, (E.146)

with λ =
√

3/2β. These solutions were shown to be nonsingular for β < 3/2.
Hence the radiation solutions (which approach those for the vacuum for η → 0
[34]) are also nonsingular. All the solutions for α = 2 approach the FLRW
radiation regime at late times because ϕ tends to a constant, and then ω(ϕ)→
∞, but in order to be in agreement with solar system experiments, α must be
greater than 1/2 [34].
The case of stiff matter (defined by ρ = p) sourcing the scalar field was studied

in [289]. Since the density of a barotropic fluid (p = (γ−1)ρ) evolves as ρ ∝ a−3γ ,
this kind of matter is expected to dominate at early times, and the associated
solutions give information about the early evolution of the universe. One of the
results in [289] is that a necessary condition for ȧ = 0 when spatial curvature
is negligible is ω = −6Mϕ/A, where A and M are positive constants, yielding
a negative kinetic term for ϕ (see Eqn.(E.134). A thorough qualitative study
of the case in which ω(ϕ) is a monotonic but otherwise arbitrary function of ϕ
was presented in [373], where the existence of nonsingular solutions in theories
which agree with GR in the weak field limit was proved.
The first term on the left hand side of Eqn.(E.135) suggests that the gravita-

tional constant is not actually a constant but varies with ϕ−1. Based on this idea,
a generalization of scalar-tensor theories (the so-called hyper-extended scalar-
tensor) was advanced in [398]. The Lagrangian associated to these theories is
given by

L = −G(ϕ)−1R +
ω(ϕ)

ϕ
ϕ,µϕ

,µ + 16πLmatter, (E.147)
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which reduces to Eqn.(E.134) when G(ϕ) = 1/ϕ. Sufficient conditions on G(ϕ),
ω(ϕ), and their derivatives in order to have bouncing cosmological solutions
were given in [159], generalizing the work of [230] for the case of ST theories.

Another descendant of the original ST theory are the multiscalar-tensor (MST)
theories [112], which are the generic product of a compactification process of a
higher-dimensional theory. The scalar content of a given MST theory depends
on the details of the internal manifold that results from the compactification
(usually gauge fields are set to zero in cosmological applications). Typically,
one or more fields are associated to the size of the extra dimensions. In string
theory, the coupling constants depend on the expectation value of massive scalar
fields (called moduli fields) also associated with the size and shape of the ex-
tra dimensions, the most popular example of them being the dilaton. The
moduli are an inescapable ingredient of string theory, hence several problem-
atic issues raised by them must be confronted, such as stabilization, overcritical
density, and violations of the Equivalence Principle. Cosmological solutions of
low-energy string theories have been extensively studied (see [257] for a review).
Needless to say, the results depend on the field content, which in turn depends
on the given string theory under scrutiny.

A possible way to parameterize an action of a MST theory is [111]

L =
√−g

[
φR− ωφ,ρφ

,ρ

φ
− φnψ,ρψ,ρ − χ,ρχ,ρ

]
+ Lmatter. (E.148)

This Lagrangian represents pure multidimensional theories when ψ =constant,
χ = constant, and ω = (1 − d)/d, where d is the number of compactified
dimensions (assuming that they have the topology of a torus). The same case
but with ψ 6= constant and n = −2/d+1 corresponds to a two-form gauge field
in higher dimensions. If this field is conformal, it is associated to a (d + 4)/2-
form, leading to n = −2/d. In the case of string theory, ω = −1, and the field
ψ is associated to a three-form field Hµνλ, leading to n = −1. The scalar χ
is related to another three-form field coming from the R-R sector of type IIB
superstring theory.

The existence of bouncing solutions for this Lagrangian in vacuum and in
the presence of radiation for the FLRW geometry for all values of the three-
curvature and for arbitrary values of ω and n has been studied in [111]. The
results show that generically there is a bounce for n < 1 and ω < 0.

Corrections coming from String Theory

Superstring theory is a candidate for a unified theory of the fundamental in-
teractions, including gravity [46]. Since the fundamental objects in this theory
are at least one-dimensional, geodesics of point particles are replaced by world-
volumes. It is a valid question then to ask whether string theory has anything
to say about the singularity problem. In this regard, it must be noted that in

2065



string theory, the gravitational excitations are defined on a fixed metric back-
ground. Since singularities in general relativity are boundaries of space-time,
which are a consequence of the dynamics governing its structure, a fixed mani-
fold is certainly a restriction. Yet another difficulty is the breakdown of string
perturbation theory in the regime of interest [66]. However, we have seen in the
previous section that the incorporation of the massless degrees of freedom (cor-
responding to the lowest order EOM), which applies on scales below the string
scale and above those where the string symmetries are broken, may smooth out
the singularity. One could go further and include higher-order corrections in
the action of string theory. There are two types of corrections. First, there
are the classical corrections arising from the finite size of the strings, when the
fields vary over the string length scale, given by λs =

√
α′. These terms are im-

portant in the regime of large curvature, and lead to a series in α′ (the inverse
of the tension of the string). Then there are the loop (quantum) corrections.
The loop expansion is parameterized by powers of the string coupling parame-
ter eφ = g2string, which is a time-dependent quantity in cosmological models. In
the so-called strong coupling regime, the dilaton becomes large and quantum
corrections are important.
The effective action at the one-loop level is given by (see for instance [18])

S =

∫
d4x
√−g

{
R

2
+

1

4
(∇φ)2 + 3

4
(∇σ)2 + 1

16
[λeφ − δξ(σ)]R2

GB

}
, (E.149)

where φ is the dilaton, σ is a modulus field, and λ = 2/g2 (g is the string
coupling), δ is proportional to the 4-d trace anomaly, and ξ(σ) = ln(2eση4(ieσ)),
where η is the Dedekind function. The correction to the gravitational term is
given in terms of the Gauss-Bonnet invariant,

R2
GB = RµνκλR

µνκλ − 4RµνR
µν +R2.

The EOM that follow from this action in the case of a FLRW flat spacetime
with the metric gµν = diag(1,−e2ωδij) are [18] 51

3ω̇2 − 3

4
σ̇2 − 1

4
φ̇2 + 24ḟ ω̇3 = 0, (E.150)

2ω̈ + 3ω̇2 +
3

4
σ̇2 +

1

4
φ̇2 + 16ḟ ω̇3 + 8f̈ ω̇2 + 16ḟ ω̇ω̈ = 0, (E.151)

σ̈ + 3ω̇σ̇ + δ
∂ξ

∂σ
ω̇2(ω̇2 + ω̈) = 0, (E.152)

φ̈+ 3ω̇φ̇− 3λeφω̇2(ω̇2 + ω̈) = 0, (E.153)

where f = 1
16
(λeφ − δξ(σ)). These equations are not linearly independent due

to the conservation of Tµν .

51See [144] for the case of nonzero spatial curvature.

2066



It was shown in [18] that there are solutions with bounce for δ < 0, which
interpolate between an asymptotically flat and a slowly expanding universe with
a period of rapid expansion. The bounce is essentially due to the violation
of the strong energy condition by the modulus field (the dilaton playing an
unimportant role). In a subsequent paper [353] it was shown that non-singular
solutions can be obtained under the assumptions that ξ is a smooth function
that has a minimum at some point σ0, and grows faster than σ2 for σ → ±∞,
and δ > 0. However, these solutions were later shown to be generically unstable
for tensor perturbations [235]. Less symmetric models (Bianchi I [236] and
Bianchi IX [419]) were also studied for this action, confirming the findings of
[235].
Another attempt to avoid the singularity is to consider the effect of matter

terms to the action of string theory. In [402] an action including dilaton, ax-
ion and one modulus field was considered along with matter (radiation or a
“stringy” gas) and higher-order dilaton corrections in a flat FLRW background
in d dimensions. In this case, the results of [402] show that the energy densities
of matter, axion and modulus are strongly suppressed in the inflationary phase
driven by the dilaton, and hence the higher-order corrections coming from this
field take the system through the graceful exit.
Yet another model inspired in string theory is the so-called ekpyrotic universe

and its extension, the cyclic universe which will be discussed in Sect.E.10.2 52.

String Pre-Big Bang

A very-well developed example of the string cosmology approach is the so-called
“pre-big bang” [179], which we shall call “string pre-big bang” (SPBB), to dif-
ferentiate it from similar models not coming from string theory (see Sect.E.3.2).
There are two properties of string theory that can be expected to play an impor-
tant role in cosmology [406]. First, in the short-distance regime, a fundamental
length λs is expected to arise, thus introducing an ultraviolet cut-off and bound-
ing physical quantities such as H2 and a. Hence a bounce may be expected.
Second, as we discussed before, at lower energies, the action of string theory is
not Einstein’s but a (multi)scalar-tensor theory, where one of the scalar fields is
the dilaton, which controls the coupling constants. If these are really constant
today (see [404]), the dilaton must be seated at the bottom of its potential,
but it may have evolved in cosmological times. The idea of the SPBB is that
during the cosmological evolution, the kinetic term of the dilaton drove a period
of deflation (or inflation, depending on whether we consider the Einstein frame
or the string frame) “before the big bang”(that is, in the contracting phase)53,
which can solve the horizon and flatness problems [172]. In this approach, the
universe starts from a perturbative state, passes through a high-curvature and

52There are more considerations about singularities and bounces in string theory, to wit
AdS/CFT correspondence [117], string gas cosmology [42], and tachyon condensation [377].

53This idea was also suggested in [318].
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high-coupling stage, and then (hopefully) enters the radiation-dominated FLRW
evolution. Duality symmetries present in the low-energy action of string theory
are invoked to support this line of reasoning [399]: in the isotropic case, the
gravidilaton EOM in the FLRW setting are invariant under a time inversion,

t→ −t⇒ H → −H,

φ̇→ −φ̇,
and under the duality transformation

a→ ã = a−1,

φ→ φ̃ = φ− 6 ln a.

(compare with the Weyl transformation, Eqn.(E.98)). These transformations
relate four branches of the solution (PBB, and post-big-bang expansion and
contraction). In particular, to any expanding solution with decreasing curva-
ture (such as those in the standard cosmological model), duality associates an
accelerated contracting solution (see Fig.E.3.3). It is this pairing (which is pos-
sible only in the presence of the dilaton) that supports the whole idea of the
SPBB. One of the issues of this idea is the joining of the two phases through the

Figure E.6.: The four branches of the low-energy string cosmology backgrounds.
Taken from [179].

putative singularity (the graceful exit problem). It has been proved in [228] that
the graceful exit transition from the initial phase of inflation to the subsequent
standard radiation dominated evolution must take place during a “string phase”
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of high curvature or strong coupling is actually required. The corrections to the
lowest-order lagrangian can be parameterized as [85]

Lc = Lα′ + Lq,

where
1

2
Lα′ = e−φ

(
1

4
R2
GB −

1

2
(∇φ)4

)
, (E.154)

and Lq designates the quantum loop corrections. Several forms of Lq were
studied in [85]. The existence of a bounce in the Einstein frame, yielding a
solution to the graceful exit problem, was shown by numerical integration of the
EOM in [85] for the case Lq = −2(∇φ)4, Lq = −2(∇φ)4 + R2/3, and for the
two-loop correction Lq = 2eφR2

GB, in all cases by choosing the appropriate sign
for the correction.
An even more general form of the corrections was studied in [96], where Lc

was given by

Lc = −
1

4
e−φ

(
aR2

GB + bφ(∇φ)2 + cGµν∂µφ∂νφ+ d(∂µφ)
4
)
,

and 4b + 2c + d = −4a (Gµν is the Einstein tensor). The quantum corrections
were included by adding a suitable power of the string coupling, so the total
effective Lagrangian is given by

L = R + (∂µφ)
2 + Lc + AeφLc +Be2φLc,

and the parameters A and B set the scale for the loop corrections. Solutions
with graceful exit were found in [96] for a large range of parameters, but it is
very hard to obtain the transition in the weak coupling regime, whilst keeping
the loop corrections small.
A problem that remains to be solved is the stabilization of the dilaton to a

constant value (otherwise there would be violations to the Equivalence Principle
and to the observed “constancy of the coupling constants”). This was achieved
in the previously mentioned articles in a number of ways: 1) by introducing by
hand a friction term in the equation of motion of the dilaton, and then coupling
it to radiation in such a way as to preserve overall conservation, 2) by “turning
off” by hand the quantum Lagrangian by means of a step function, and 3) by
the manipulation of the sign and size of the higher-loop corrections.

E.3.4. Appendix:Conformal Transformation

Consider the map
g̃µν (x) = Ω2 (x) gµν (x). (E.155)

Then, for the contravariant components:

g̃µν (x) = Ω− 2 (x) gµν (x). (E.156)
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The conformal transformation of the connection is provided by

Γ̃αµν = Γαµν +
1

Ω

(
Ω,µ δ

α
ν + Ω,ν δ

α
µ − Ω,ǫ g

ǫα gµν
)
, (E.157)

and for the curvature tensor:

R̃αβ
µν = Ω− 2Rαβ

µν −
1

4
δ[α[µQ

β ]
ν ], (E.158)

where
Qα

β ≡ 4Ω− 1 (Ω− 1), β;λg
αλ − 2 (Ω− 1), µ (Ω

− 1), ν g
µνδαβ .

Contracting Eqn.(E.158) we get

R̃α
µ = Ω− 2Rα

µ −
1

2
Qα

µ −
1

4
Qδαµ , (E.159)

and contracting again,

R̃ = Ω− 2[R + 6Ω− 1�Ω ]. (E.160)

A direct comparison of this conformal scalar of curvature and the Weyl scalar
equation (E.97) shows that they coincide (up to a multiplicative factor) if we
set

Ω = exp

(
− 1

2
ϕ

)
,

and Eqn.(E.160) takes the form

R̃ = eϕ[R− 3�ϕ +
3

2
ϕ,µϕ

,µ],

which is exactly the transformed of the Ricci scalar for the WIST:

R̃ = eϕR(W ).

E.4. Maxwellian and Non-Maxwellian Vector Fields

E.4.1. Introduction

The model described by the FLRW geometry with Maxwell’s electrodynamics
as its source displays a cosmological singularity at a finite time in the past
[247]. However, this is not an intrinsic property of the combined electromagnetic
and gravitational fields. Indeed, modifications of Maxwell electrodynamics (or,
generically, massless vector field dynamics) can generate non-singular spatially
homogeneous and isotropic (SHI) solutions of classical GR. We shall examine
here two modifications that are relevant to the singularity problem:

• The non-minimal coupling of the EM field with gravity, and
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• the self-interaction of the EM field.

These modifications will be introduced by means of Lagrangians which depend
nonlinearly on the field invariants or on the space-time curvature. In both cases,
the singularity theorems (see Ch.E.1) are circumvented by the appearance of a
large, but nevertheless finite, negative pressure in an early phase of the SHI
geometry.

E.4.2. Einstein-Maxwell Singular Universe

The fact that Maxwell electrodynamics minimally coupled to gravity leads to
singular models for the universe in the FLRW framework is a direct consequence
of the singularity theorems (see Ch.E.1). Essentially, this can be understood
from the examination of the energy conservation law and Raychaudhuri equa-
tion, as follows. To be consistent with the symmetries of the SHI metric, an
averaging procedure must be performed if electromagnetic fields are to be taken
as a source for the EE [396]. As a consequence, the components of the electric
Ei and magnetic Hi fields must satisfy the following relations:

Ei = 0, Hi = 0, Ei Hj = 0, (E.161)

Ei Ej = − 1

3
E

2 gij, (E.162)

Hi Hj = − 1

3
H

2 gij. (E.163)

The symmetric energy-momentum tensor associated with Maxwell Lagrangian
is given by

Eµν = Fµα F
α
ν +

1

4
F gµν , (E.164)

in which F ≡ Fµν F
µν = 2(H 2−E

2). Using the above average values it follows
that the Tµν reduces to a perfect fluid configuration with energy density ργ and
pressure pγ given by

Eµν = (ργ + pγ) vµ vν − pγ gµν , (E.165)

where

ργ = 3pγ =
1

2
(E 2 + H

2). (E.166)

The fact that both the energy density and the pressure in this case are positive
definite for all values of t implies the singular nature of FLRW universes. In
fact, the solution of EE for the above energy-momentum configuration gives for
the scale factor the singular form [355]

a(t) =
√
a20t− ǫt2, (E.167)

where a0 is an arbitrary constant. We conclude that the space-time singularity
in the Einstein-Maxwell system is unavoidable.
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E.4.3. Non-minimal interaction

Most of the articles concerning the interaction of Electrodynamics with Gravi-
tation assume the principle of minimal coupling, which is a direct application of
the strong form of the Equivalence Principle. In the absence of stringent limits
from observation, ideally we should keep an open mind and consider other pos-
sibilities. Non-minimal coupling of the EM field with gravity has recently been
applied in cosmology, following the trend initiated by scalar field theories inter-
acting conformally with gravitation. These opened the way to the examination
of more general theories, such as those in which curvature is directly coupled
with the fields.
There are seven possible Lagrangians for the interaction of the EM field with

Gravity which can be constructed as linear functionals of the curvature tensor.
They are divided in two classes. Class I is given by:

L1 = R AµA
µ,

L2 = RµνA
µAν .

These two Lagrangians are gauge dependent but no dimensional constant must
be added since they already have the right dimensionality. As shown in [311]
the EOM obtained from L2 in Einstein’s gravity with the addition of a kinetic
term for Aµ do not admit a FLRW solution. Thus, in the following we shall
limit our analysis to L1.
In Class II, there are five Lagrangians :

L3 = R FµνF
µν ,

L4 = R FµνF
µ
∗

ν ,

L5 = Rµν F
µ
αF

αν ,

L6 = Rαβµν Fαβ F
νµ,

L7 =
∗
Wαβµν F αβ F µν , (E.168)

where W αβµν is the Weyl tensor and the star in the Weyl tensor means

∗
Wαβµν = W

αβ
∗

µν
= W ∗

αβµν
=

1

2
η ρσ
αβ Wρσµν .

These Lagrangians are gauge independent but they all need the introduction of
a length ℓ0 in order to have the correct dimensionality.
Another Lagrangian sometimes studied in the literature that is not explicitly

contained in this list is
L8 = R∗

αβµ
∗

ν
F αβF µν .

However, L8 is not independent of (L1, ...L7). Indeed, the double dual R∗

αβµ
∗

ν

satisfies the identity

R∗

αβµ
∗

ν
= Rαβµν − 2Wαβµν −

1

2
R gαβµν , (E.169)
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or, equivalently,

R∗

αβµ
∗

ν
= −Wαβµν +

1

2
(Rαµgβν +Rβνgαµ − Rανgβµ − Rβµgαν)−

− 1

3
Rgαβµν . (E.170)

Thus,

L8 = −L6 −
1

3
R (gαµgβµ − gανgβµ)F αβF µν +

1

2
(Rαµgβν + gαµ −

− Rανgβµ −Rβµgαν)F
αβF µν .

Hence, L8 = −L6 − 2
3
L3 − 2L5.

E.4.4. An example of a non singular universe

The first example of a nonsingular universe driven by the nonminimal coupling
of EM and gravity was presented in [311], using the L1 of the previous section:

L = R− 1

4
F µν Fµν + β RAµA

µ. (E.171)

As mentioned in Sect.E.4.2, in order to obtain a SHI geometry in the realm of
General Relativity having a vector field as a source, an average procedure is
needed. In the present non-minimal case there is another possibility, which we
shall now explore. Since this theory is not gauge-invariant, it is possible to find
a non-trivial solution for Aµ such that F µν vanishes.
The equations of motion that follow from the Lagrangian (E.171) are:

(1 + β A2) (Rµν −
1

2
Rgµν)− β�A2 gµν + β (A2);µ;ν + β RAµAν = −Eµν − Tµν ,

(E.172)
F µν
;ν = −2β RAµ. (E.173)

From the trace of (E.172) it follows

R = − 3β�A2,

which when inserted in the equation of evolution of the electromagnetic field
yields a nonlinear equation:

F µν
; ν − 6β2 (�A2)Aµ = 0. (E.174)

The non-linearity induced by the non-minimal coupling with gravity is a generic
feature for any field. To obtain a solution in which the geometry is nonsingular
for a SHI geometry without imposing an average on the fields [311] we can
consider the case in which Fµν is zero. This is possible due to the explicit
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dependence of the dynamical equations on the vector Aµ. We take the vector
field Aµ of the form

Aµ = A(t) δ0µ. (E.175)

Defining the quantity Ω by

Ω(t) ≡ 1 + β A2, (E.176)

the set of equations (E.172-E.173) in a FLRW geometry reduces to the following:

3
ä

a
= − Ω̈

Ω
, (E.177)

ä

a
+ 2

(
ȧ

a

)2

+
2 ǫ

a2
= − ȧ

a

Ω̇

Ω
, (E.178)

�Ω = 0. (E.179)

The last equation implies that a3 dΩ/dt is a constant. Thus we set dΩ/dt =
b a− 3. A particular solution of this set of equations for ǫ = −1 is given by [311]

A2(t) = 1− t

a(t)
(E.180)

a(t) =
√
t2 + α2

0 (E.181)

where α0 is a constant that measures the minimum possible value of the scale
factor. When α0 = 0 the system reduces to empty Minkowski space-time in
Milne coordinates. For α0 6= 0 this model represents an eternal universe with-
out singularity and with a bounce 54 Notice that in recent years theories with
negative energies have been examined in a cosmological context [326]. One way
to achieve this goal is by introducing an ad-hoc term in the Lagrangian with
the wrong sign. In the case of a scalar field this is given as

S =

∫ √−g (R− 1

2
∂µϕ∂

µϕ). (E.182)

A fluid with this odd feature can also be obtained by the non-minimal interaction
of a vector field with gravity. Indeed, the solution presented in the preceding
section can be interpreted as a perfect fluid with negative energy. The equations
of motion presented in [311] can be re-written in the form:

Rµν =
Ω,µ;ν
Ω

, (E.183)

were Ω, given by Eqn.(E.176), depends only in time . The structure of the
corresponding system of equations is equivalent to the equations of General

54This form of the scale factor is similar to Melnikov-Orlov geometry [286], the difference
being in the interpretation of the minimum radius a0 and the source of the curvature.
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Relativity in the SHI geometry having as its source the energy-momentum tensor
of a perfect fluid with negative energy density and pressure given by

p =
1

3
ρ = − a

2
0

a4
(E.184)

In this way, fluids with the ”wrong” sign in Einstein’s equation can be inter-
preted as vector fields with non-minimal interaction with gravity.

E.4.5. Nonlinear electrodynamics

As pointed out in the introduction of this Chapter, linear electromagnetism
unavoidably leads to a singularity. This situation changes drastically in the
case of non-minimal coupling. In this section, we shall deal with another type
of theories, in which it is the nonlinearity of the self-interaction of the EM field
that provides the necessary conditions for a cosmological bounce to occur. The
theories that will be examined are described by Lagrangians which are arbitrary
functions of the invariants F andG that is L = L(F,G), where F = FµνF

µν , G
.
=

1
2
ηαβµνF

αβF µν . Their corresponding energy momentum tensor, computed from
Eqn.(E.5) yields

Tµν = −4LF FµαFαν + (GLG −L) gµν , (E.185)

where LA ≡ dL/dA, with A = F,G. It follows that

ρ = −L +GLG − 4LFE
2, (E.186)

p = L−GLG −
4

3
(2H 2 − E

2)LF . (E.187)

We shall start our analysis by studying a toy model generalization of Maxwell’s
electrodynamics generated by a Lagrangian quadratic in the field invariants as
in [125], that is:

L = −1
4
F + αF 2 + β G2, (E.188)

where α and β are dimensionfull constants 55.

Magnetic universe

In the early universe, matter behaves to a good approximation as a primordial
plasma [391, 94]. Hence, it is natural to limit our considerations to the case in
which only the average of the squared magnetic field H 2 survives [137, 391].
This is formally equivalent to put E 2 = 0 in (E.162), and physically means

55If we consider that the origin of these corrections come from quantum fluctuations then
the value of the constants α and β are fixed by the calculations made by Heisenberg and
Euler.
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to neglect bulk viscosity terms in the electric conductivity of the primordial
plasma.
The Lagrangian (E.188) requires some spatial averages over large scales, such

as the one given by equations (E.161)–(E.163). If one intends to make similar
calculations on smaller scales then either more involved Lagrangians should be
used, or some additional magnetohydrodynamical effect [394] should be devised
in order to achieve correlation [222] at the desired scale. Since the average
procedure is independent of the equations of the electromagnetic field we can
use the above formulae (E.161)–(E.163) to arrive at a counterpart of expression
(E.165) for the non-Maxwellian case. The average energy-momentum tensor
is identical to that of a perfect fluid (E.165) with modified expressions for the
energy density ρ and pressure p, given by

ρ =
1

2
H

2 (1− 8αH
2), (E.189)

p =
1

6
H

2 (1− 40αH
2). (E.190)

Inserting expressions (E.189)–(E.190) in the conservation equation (E.2) yields

H =
H0

a2
, (E.191)

where H0 is a constant. With this result, equation (E.4) leads to

ȧ2 =
H 2

0

6 a2

(
1− 8αH 2

0

a4

)
− ǫ. (E.192)

Since the right-hand side of equation (H.32) must not be negative it follows
that, for α > 0 the scale factor a(t) cannot be arbitrarily small regardless of the
value of ǫ. The solution of Eqn.(H.32) is implicitly given as

t = ±
∫ a(t)

a0

dz√
H 2

0

6z2
− 8αH 4

0

6z6
− ǫ

, (E.193)

where a(0) = a0. The linear case described by Eqn.(E.167) can be regained from
Eq.(E.193) by setting α = 0. For the Euclidean section, expression (E.193) can
be solved as 56

a2 = H0

√
2

3
(t2 + 12α). (E.194)

From Eqn.(E.191), the average strength of the magnetic field H evolves in time
as

H
2 =

3

2

1

t2 + 12α
. (E.195)

56Nonsingular solutions in Bianchi universes with nonlinear electrodynamics as a source were
studied in [170].
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Expression (H.33) is singular for α < 0, as there exist a time t =
√
−12α for

which a(t) is arbitrarily small. Otherwise, for α > 0 at t = 0 the radius of the
universe attains a minimum value (see Fig.E.7) a0, given by

a20 = H0

√
8α, (E.196)

which depends on H0. The energy density ργ given by Eqn.(E.189) reaches its
maximum value ρmax = 1/64α at the instant t = tc, where

tc =
√
12α. (E.197)

For smaller values of t the energy density decreases, vanishing at t = 0, while
the pressure becomes negative (see Fig.E.8, left panel). Notice that we have
a minimum of a(t) along with a minimum of the energy density, entailing a
violation of the NEC condition, in accordance with the first row of TableE.1.2.
Only for times t <∼

√
4α the non-linear effects are relevant for the normalized

scale-factor, as shown in Figure E.8, left panel. Indeed, the solution (H.33)
yields the standard expression (E.167) of the Maxwell case at the limit of large
times. Notice that the energy-momentum tensor (E.185) is not trace-free for

Figure E.7.: Plot of the scale factor as a function of t for different values of ǫ
and α. Taken from [125].

α 6= 0. Thus, the equation of state pγ = pγ(ργ) is no longer that of Maxwell’s;
it has instead a term proportional to the constant α, that is

p =
1

3
ρ− 16

3
αH

4. (E.198)

This scenario has been generalized in several ways in [93]. First, the general
expression for the scale factor was shown to be

a(t) = a0(4α
2
0t

2 + 4α0β0t + 1)1/4, (E.199)
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Figure E.8.: Left panel: time dependence of ρ and p for ǫ = 0 and α > 0. Right
panel: scale factor for ǫ = 0 and α > 0 (full line), and for Mawxell’s
case (dashed line). Taken from [125].

where

α0 =

√
2

3
H0, β0 = ±

√
1− 8αH0.

Eqn.(H.33) follows as a particular case from Eqn.(E.199), which describes a
bounce with

amin = a0(8ωH
2
0 )

1/4, tmin = −β0/(2α0), Hmin =
1

2
√
2α
, ρmin = 0.

Solutions of this model with the addition of a cosmological constant Λ were
also discussed in [93]. It was shown that nonsingular solutions are possible both
for a constant Λ, and for certain choices of Λ = Λ(t).

Born-Infeld electrodynamics

A widely studied EM theory is that proposed by Born and Infeld, with La-
grangian

LBI = β2
(
1−
√
X
)

(E.200)

where

X ≡ 1 +
1

2β2
F − 1

16β4
G2 (E.201)

Note that, following Born-Infeld’s original work, a constant term has been added
in the Lagrangian in order to eliminate a cosmological constant and to set the
value of the Coulomb-like field to be zero at the infinity. Using equation (E.186)
for the energy density we obtain

ρ =
β2

√
X

(
1−
√
X +

H 2

β2

)
(E.202)
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and for the pressure

p =
β2

√
X

(√
X − β2 +

2

3

E 2

β2
− 1

3

H 2

β2

)
(E.203)

A straightforward calculation of ρ + 3p shows that this theory cannot yield a
nonsingular universe.

Bouncing in the Magnetic Universe

The “magnetic universe” displays a very interesting property due to the non-
linear dynamics: its energy density can be interpreted as composed of k non-
interacting fluids, in the case in which the dynamics is provided by the polyno-
mial

L =
∑

k

ck F
k, (E.204)

where k ∈ Z. The conservation of the energy-momentum tensor projected in
the direction of the co-moving velocity vµ = δµ0 yields

ρ̇+ (ρ+ p)θ = 0. (E.205)

From the expression for the energy density and pressure given in Eqns.(E.186)
and (E.187) with E = 0 we get that ρ =

∑
k ρk, and p =

∑
k pk where

ρk = −ck2kH 2k

pk = ck 2
k
H

2k

(
1− 4k

3

)
, (E.206)

in such a way that we can associate to each power of k an independent fluid
characterized by ρk and pk, with an EOS

pk =

(
4k

3
− 1

)
ρk.

Inserting the total energy density and pressure (from the sum of ρk and pk in
Eqns.(E.206) and (E.206)) in the conservation equation (H.12) we obtain

LF
[
(H 2). + 4H 2 ȧ

a

]
= 0. (E.207)

The important result that this equation shows is that each k-fluid is separately
conserved, since the dependence of the conservation equation on the specific
form of the Lagrangian factors out, in such a way that H evolves with the scale
factor as

H =
H0

a2
(E.208)

for any L of the form given in Eqn.(H.18).
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Two-fluid description

It follows from equations (E.189), (E.190) and (E.191) that in the case of the
nonlinear Lagrangian given by Eqn.(E.188) it is not possible to write an equa-
tion of state relating the pressure to the energy density. This is a drawback
if we want to use a fluid description of the averaged electromagnetic field. In
order to circumvent such difficulty a two-fluid description can be adopted, be-
cause of the remarkable fact that there exists a separate law of conservation for
each component of the fluid, as we saw above. The fact that the dynamical
equation for H factors (see Eqn.(E.207) means that the fluids are conserved
independently: the energy-momentum tensor can be separated into two pieces,
each representing a perfect fluid which is conserved independently. In other
words, there is no interaction between fluids 1 and 2. We shall see in Section
E.11.2 that the analysis of the stability of the non-singular universe described
in this section is more transparent when using the two-fluid description. This
case can be generalized to a multi-component fluid, but we shall restrict here to
the 2-fluid application for a pure magnetic field.
In order to get a better understanding of the properties of the cosmic geome-

try controlled by the magnetic field let us analyze the case in which the spatial
section is closed (ǫ = 1). The crucial equations for such analysis are the con-
servation law, the Raychaudhuri equation for the expansion and the Friedman
equation, that is:

ρ̇+ (ρ+ p) θ = 0, (E.209)

θ̇ +
1

3
θ2 = −1

2
(ρ+ 3p). (E.210)

ρ =
1

3
θ2 +

3

a2
, (E.211)

In the magnetic universe we have

ρ =
H0

2

2a4

(
1− 8α

H0
2

a4

)
. (E.212)

A necessary condition for the existence of a bounce is given by the vanishing of
the expansion factor for a given value of t. This leads to an algebraic equation
of third order in x ≡ a2b :

x3 − H
2
0

6
x2 +

4

3
αH0

4 = 0. (E.213)

Using the fact that α is a very small parameter, it can be shown that this
equation has three real solutions. Two of them are positive and the third is
negative. Thus we retain only the positive solutions which will be called X1 and
X2. The important quantity for our analysis is contained in the expression

ρb + 3pb =
H 2

0

x4
(x2 − 24αH0

2). (E.214)
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Thus, at one of the points, say X1 there is a local maximum for the scale factor;
and at the other, X2 there is a minimum for x2 < 24αH0

2. Note that at the
bounce (where θ = 0), there is an extremum of the total energy: ρ̇b = 0. The
analysis of the second derivative in the bounce depends on the location of X2

through the equations:

ρ̈b =
1

3

H0
4

x8
(
x2 − 16αH

2
0

) (
x2 − 24αH

2
0

)
. (E.215)

At x = X1 the density is a minimum. For x = X2 the extremum depends on
the location of the bounce with respect to the point in which the quantity ρ+ p
changes sign. For the case in which 16αH0

2 < X2 < 24αH0
2, it follows that

the density has a maximum at X1. On the other hand if X2 < 16αH0
2 it is

a minimum. To understand completely the behavior of the energy density the
existence of other critical points for ρ must be addressed. This is controlled by
equation (E.209). Thus, the extra extremum (which are not bounce or turning
points) occur at x such that

ρ+ p =
2

3

H 2
0

x4
(x2 − 16αH

2
0 ) = 0, (E.216)

that is, at points in which the scale factor takes the value
√

16αH0
2. Direct

inspection shows that these are points of maximum density.
Another consequence of nonlinear electromagnetism in cosmology is the oc-

currence of cyclic universe, as will be discussed in Sect.E.10.2.

E.4.6. Appendix

Repulsive gravity

A peculiar result which may provide a framework to generate cosmological sce-
narios without singularity comes from the nonminimal interaction of EM with
gravity, rendering gravity repulsive. The theory is defined by

L =
√−g

{
R− 1

4
FµνF

µν + βR AµA
µ

}
, (E.217)

where β is a dimensionless constant. This Lagrangian is not gauge-invariant and
can be interpreted in terms of a photon having a mass (and also an additional
polarization state) which depends on the curvature of the geometry.
Variation of gµν and Aµ yield the equations of motion:

(
1

κ
+ βA2

)
Gµν = βgµν�A

2 − βA2
,µ;ν − βRAµAν − Eµν , (E.218)

F µν
;ν = −2βRAµ, (E.219)
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where Eµν is Maxwell’s energy-momentum tensor given by equation (E.164).
As will be shown next, this set of equations allows a renormalization of the
gravitational constant. Consider for instance the case in which AµA

µ = Z =
constant 6= 0. Then

(
1

κ
+ βZ

)
Gµν = −βRAµAν − Eµν . (E.220)

Taking the trace of this equation we obtain R = 0, and inserting this result back
into Eqn.(E.220) we get

Rµν = −κ̃Eµν ,
where the renormalized constant κ̃ is given by

1

κ̃
=

1

κ
+ βZ.

Thus, Eqns.(E.218) and (E.219) can be written as

Rµν = −κ̃Eµν , F µν
;ν = 0, (E.221)

which are nothing but Maxwell’s electrodynamics minimally coupled to grav-
ity with a re-normalized gravitational coupling plus the condition AµA

µ =
constant = Z.
The addition of other forms of neutral matter, such that the corresponding

energy-momentum tensor is traceless, takes the Lagrangian to

L =
√−g

{
1

κ
R− 1

4
FµνF

µν + β RAµA
µ + L(m)

}
, (E.222)

where L(m) represents the Lagrangian for all other kinds of matter such that
T

(m)
µν gµν ≡ T (m) = 0. The equations of motion in this case are given by
(
1

κ
+ β A2

)
Gµν = β�A2gµν − βA2

,µ;ν − βRAµAν − Eµν − Tmµν (E.223)

F µν
;ν = −2βRAµ. (E.224)

Taking again the case AµA
µ = constant, yields R = 0. Then Eqns.(E.223-E.224)

take the reduced form

Rµν = −κ̃Eµν − κ̃T (m)
µν ,

F µν
;ν = 0,

where κ̃ was given above. Thus, the renormalization of the gravitational con-
stant by the non-minimal coupling represented by the presence of the term
RAµA

µ in the Lagrangian in the state where AµAµ is constant is still valid in
the presence of matter with null trace 57.

57Note that this model provides a mechanism for a bounce, but needs to be modified to
account for the correct large-scale behavior.
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Global Dual invariance

While observation must be the ultimate judge of the choice among the possible
couplings, if it scarce or not available, we can resort to criteria coming from
theoretical considerations. One of them is related to the invariance of the La-
grangian under a given transformation, such as the dual rotation. A dual map
is a transformation on the set of the bi-tensors Fµν such that

Fµν → F ′
µν = cos θFµν + sin θF ∗

µν . (E.225)

Classical Maxwell’s electrodynamics is invariant under such transformation only
if the angle θ is constant. In a Minkowskian background it is not possible to
implement such invariance for a local map θ = θ(x). However, this can be
achieved in the case of a non-minimal coupling of the electromagnetic field with
the metric of a non-flat geometry. In fact, using the identities

Fµα F
αν − F ∗

µα F
∗αν = − F

2
δνµ

Fµα F
∗αν = − G

4
δνµ

it can be shown that the combined Lagrangian:

LDI = L5 −
1

4
L3 =

(
Rµν −

1

4
R gµν

)
F µ

αF
αν . (E.226)

is invariant under local dual rotations: L̃DI = LDI. This is a remarkable property
which has no counterpart in the flat space limit.

E.5. Viscosity

A full knowledge of the global properties of the universe cannot be achieved
without giving a description of the thermodynamics of the cosmic fluid. In
the last decades, this task was addressed in three distinct periods. In the first
period the universe was treated as a system in equilibrium in which all global
processes were described by classical reversible thermodynamics, in such a way
that total entropy was conserved. The salient feature of this phase was the
development of the standard cosmological model, which comprises the homo-
geneous and isotropic FLRW geometry, and the characterization of the matter
content of the universe as a one-component perfect fluid in equilibrium. In or-
der to solve the EE, the energy density ρ and the pressure p were considered
functions of the cosmological time only, and they were related by a linear EOS
p = λρ. The FLRW models generated in this way share the common property
of having an initial singularity (with λ > −1/3).
Later, it was realized [135] that the validity of thermal equilibrium near the

initial singularity is perhaps too strong an assumption. A second phase then
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started, in which the description of the cosmic fluid was improved by allowing
viscous processes. Some of the motivations for this alteration are the following:

• The examination of the possible role of viscosity in the dissipation of
eventual primordial anisotropies (chaotic cosmologies),

• The effect on the existence and/or the form of the singularity,

• The application in cosmology of results obtained from non-equilibrium
thermodynamics.

In 1973 a FLRW cosmological model without singularity was presented [299]
(see also [246]), using a viscous fluid as a source. The energy-momentum tensor
was given by

Tµν = (ρ+ p) vµ vν − p gµν ,
in which p = pth−ζ θ; where pth is the thermodynamical pressure, ζ is a viscous
coefficient and θ is the three times Hubble parameter, which is exactly the case
of the energy-momentum tensor representing particle creation [51]. The SEC in
this case is given by the inequalities

ρ+ pth > 0

and

ρ+ 3pth > 0,

which are weaker than the correspondent ones in the case of perfect fluid, hence
allowing for the absence of singularity. The solution found in [299] is nonsingu-
lar, and past-eternal.

More general forms for the dependence of viscous quantities have been inves-
tigated for arbitrary Stokesian regimes in which the fluid parameters become
more general (for instance nonlinear) functions of the expansion. With these
modifications, there are non-singular cosmological solutions, but they may suf-
fer from a possibly worse disease than the initial singularity: they are unstable
and display non-causal propagation. In fact, the instability of the model in [299]
under homogeneous perturbations was proven by the analysis made in [51]. It
was also proved in [51] that the avoidance of the singularity is not generic. In
other words, the singularity is not avoided for any type of viscosity (that is, for
any dependence of the coefficients of viscosity on the expansion factor).

In this second phase, local equilibrium [346] is still imposed, in such a way
that the thermodynamical variables are described as if the dissipative fluxes -
e.g. heat flux - do not influence local variables like for instance the entropy,
although as a whole the system is not in equilibrium. As another example, a
fluid in the regime

p̃ = p+ αθ + βθ2
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was analyzed in [312], both for α = β = constant, and α = 0, β = Mρm, with
M and m constants. In the second case, nonsingular solutions were found using
tools from dynamical systems analysis.

Let us remark that in general, the imposition of local equilibrium leads to
causal difficulties, allowing dissipative signals to travel with infinite velocity of
propagation. These causal problems were the focus of the third phase, where
extended irreversible thermodynamics was used [220]. In this theory, the basic
quantities become dependent not only on local variables of classical thermody-
namics but also on the dissipative fluxes. This has very important consequences,
the most important one being the preservation of causal connections for the
whole system. In [127], a FLRW universe was studied in this context, the net
consequence of the assumption of extended irreversible thermodynamics being
to provide an additional equation of motion for the non-equilibrium pressure π,
with p = pth + π, given by

τ0π̇ + π = −ξθ. (E.227)

(where τ0 is the relaxation time) which preserves the causal structure. Thus,
contrary to the previous case in which the viscous term is assumed to be a
polynomial in θ, here it must obey Eqn.(E.227). The other quantities relevant
to thermodynamics (that is, the entropy flux sα and the particle flux per unit
of proper volume n) are determined by

nṡ =
π2

ξT
, θ = − ṅ

n
.

Assuming an EOS given by pth = λρ, the cases ξ = constant, and ξ = βρ,
(with β = constant) were analyzed in [127], always with τ0 = constant, and
nonsingular solutions were discovered in both cases, for λ = 0 and λ = 1/3.
The relevant equations of this system can be put in the form of an autonomous
planar system:

dθ

dt
= −3/2(1 + λ)θ2 − π

2
+

(1 + λ)

2
Λ,

dπ

dt
= − 1

τ0
(1 + 3ζ θ), (E.228)

where Λ is the cosmological constant. The set of integral curves of this system
was studied in [317], where it was shown that the solution found in [127] is
stable.

Bifurcations in the early cosmos

Quadratic dissipative processes were analyzed from a new perspective in [314],
where it was shown that dissipative processes may lead to the appearance of
bifurcations. This is a consequence of the application of a theorem due to
Bendixson [17] to the system of EE that describes a universe with curvature
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controlled by a dissipative fluid. Indeed, let us consider a planar autonomous
system that contains a parameter, say σ, of the form

ẋ = F (x, y; σ)

ẏ = G(x, y; σ), (E.229)

where the functions F and G are non-linear and the parameter σ has a domain
D. Applying methods of qualitative analysis to this system and restricting to
the two-dimensional plane Γ of all integrals of this system, one arrives to the
notion of ”elliptical” and ”hyperbolic” sectors, that characterize, as the names
indicates, the behavior of the integral curves in the neighborhood of a multiple
equilibrium point (that is, an isolated points that is a zero of both F and G).
Let us call E and H the number of elliptical and hyperbolic sectors of a given
equilibrium point M ≡ (x0, y0) of Γ, respectively. Then the Poincaré index is
defined by the formula

IP =
E − H

2
+ 1.

This is a measure of the topological properties of the integral curves in the phase
plane Γ. If above a certain value σc of D the topological properties of the system
(E.229) change, then there is an abrupt change of behavior of the physical system
in the vicinity of the unstable equilibrium point. The crucial consequence of the
above-given theorem is the appearance of indeterministic features. In [314]
this theorem was applied to spatially homogeneous and isotropic cosmological
models, whose dynamics is described by a planar autonomous system, given by

ρ̇ = −γ ρ θ + α θ2 + β θ3,

θ̇ = −3γ − 2

2
ρ+

3α

2
θ +

(
3β

2
− 1

3

)
θ2, (E.230)

where σ (referred to in the theorem) can be either α, β or γ, and the energy-
momentum tensor is

Tµν = (ρ+ p̃) vµ vν − p̃ gµν ,
where

p̃ = pth + α θ + β θ2,

with pth = (γ − 1) ρ.
The viscous terms (parameterized by α and β) can be a phenomenological

description of particle creation in a nonstationary gravitational field as proposed
in [407] and [426]. Applying the methods of qualitative analysis to the system
given in Eqn.(E.230) it was shown in [314] that for γ − 3β < 0, the Poincaré
index IP (B) = −1 (saddle point); for γ − 3β ≥ 0, IP (B) = 1 (two-tangent
node). This situation characterizes a bifurcation in the singular point, when ρ =
θ = ∞. This bifurcation, caused by dissipative processes involving quadratic
viscous terms generates a high degree of indeterminacy in the development of
the solution of EE, which enshrouds the past of this model of the universe. In
this case, nothing can be stated about the existence of the initial cosmological
singularity.
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E.6. Bounces in the braneworld

Theoretical developments coming from string theory have revived the idea that
our universe may have more than 4 dimensions (first considerated by Kaluza
in the context of unification of gravity and electromagnetism). Among the
multidimensional models, those with one or more branes that live in a bulk space
have been thoroughly studied recently (see for instance [273]). In these models,
the matter fields are typically confined to a 3-brane in 1 + 3 + d dimensions,
while the gravitational field can propagate also in the d extra dimensions, which
need not be small, or even finite, as shown in one of the models introduced by
Randall and Sundrum [348], where for d = 1, gravity can be localized on a single
3-brane even when the fifth dimension is infinite. The Friedmann equation on
the brane is modified by high-energy matter terms and also by a term which
incorporates the nonlocal effects of the bulk onto the brane [54, 273]:

H2 =
Λ

3
+
κ2

3
ρ− ǫ

a2
+
κ4

36
ρ2 +

1

3

(
κ

κ

)4

U0
(a0
a

)4
, (E.231)

where ǫ is the 3-curvature, H = ȧ/a, ρ is the energy density of the matter on

the brane, κ2 = 8π/M
3

P l, M
3

P l is the fundamental 5-dimensional Planck mass,
κ2 = 8π/M2

P l, and

Λ =
4π

M
3

P l

[
Λ +

(
4π

3M
3

P l

)
λ2

]
,

where λ is the tension of the brane, and Λ is the 5-dimensional cosmological
constant. Finally, U 0 is the constant corresponding to the non-local energy
conservation equation. This term comes from the projection of the Weyl tensor
of the bulk on the brane [273]. From Eqn.(E.231) we see that a necessary
condition to have a bounce with ρ > 0 in the ǫ = 0,−1 cases is that either
Λ < 0 or U < 0, or both.
The case that includes matter in the bulk, without cosmological constant for

a flat FLRW d+ 1-dimensional was studied in [165]. A neceessary condition in
order to have a bounce is that dH/dt > 0, with

dH

dt
=
κ2

d
(R + P )−

(
8πGN

d− 1
+
κ4

4d
ρ

)
(ρ+ p)− d+ 1

d(d− 1)
E0

0 , (E.232)

where (in a notation slightly different from that used in Eqn.(E.231)) κ is the
bulk gravitational coupling, GN the effective Newton constant on the (d + 1)-
dimensional brane, E is the projection of the bulk brane Weyl tensor on the
brane, and T µν = (−R, ~P ) is the projection of the bulk energy-momentum tensor
on the brane. It follows from this equation that a necessary condition to have a
bounce without resorting to exotic forms of matter (that is, matter that violates
ρ > 0 or ρp > 0) is a negative E0

0 [165]. This is precisely the approach taken
in [233, 295], where a brane evolving in a charged AdS black hole background
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was studied. Bouncing solutions were found for both critical (Λ = 0) and non-
critical (Λ 6= 0) branes, the bounce generically depending on the parameters of
the black hole, and on the matter content of the brane 58.
The abovementioned necessary condition was explicitly checked in the case of

the dilaton-gravity braneworld [165], and bouncing solutions were obtained for
a a flat FLRW brane in a static spherically symmetric bulk 59. This solution de-
scribes (in the string frame) a pre-big bang model where the transition between
the branches is realized at low curvature and weak coupling, thus providing an
example of succesful graceful exit without resorting to quantum or “stringy”
corrections.
Notice that the extra dimension(s) could be spacelike or timelike. The latter

case was analyzed in [375]. The usual incantations [273] for the case of an extra
timelike dimension and an homogeneous and isotropic brane lead to [375]

H2 +
ǫ

a2
=

Λ

3
+

8πGρ

3
− ρ2

M̄6
Pl

+
C

a4
, (E.233)

where G and Λ are the effective gravitational and cosmological constant, respec-
tively, and M is the 5-dimensional Planck mass. Notice that the minus sign in
front of ρ2 may lead to a bounce instead of a singularity, since this term grows
faster than the others, leading to H = 0, this feature being independent of the
equation of state and also of the spatial curvature of the universe. The simplest
of these bouncing universes, described by

H2 =
8πG

3
ρ− ρ2

M̄6
Pl

(E.234)

will be discussed in Sec.E.10.2, since it may lead to a cyclic universe.
The case with an extra timelike dimension in this scenario was also extended

to Bianchi I universes [375], which exhibit an anisotropic bounce as long as the
shear scalar σαβσ

αβ does not grow faster than a−8 as a goes to zero at the end of
the contraction phase. All these results were obtained by neglecting the induced
curvature on the brane, which can trigger the formation of a singularity at the
beginning or at the end of the evolution [375].
Another model along these lines was introduced in [14], where a “test brane”

(i.e. one that does not modify the ambient geometry) moves in a higher-
dimensional gravitational background. Using the thin-shell formalism, in which
the field equations are re-written as junction conditions relating the discontinu-
ity in the brane extrinsic curvature to its vacuum energy, the motion of domain
walls in de Sitter and anti-de Sitter (AdS) time-dependent bulks was discussed.
This motion induces a dynamical law for the brane scale factor, and it was shown

58The bounce in the model presented in [295] was analyzed from the point of view of the
causal entropy bound in [285], and its stability was put in doubt in [212].

59Bouncing solutions for a domain wall in the presence of a Liouville potential were found in
[103].
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in [14] that in the case of a clean brane the scale factor may describe a non-
singular universe. In order to build the class of geometries of interest, two copies
of (d+1)-dimensional dS (AdS) spaces M1 and M2 undergoing expansion were
considered. From each of them, one identical d-dimensional region Ωi (i = 1, 2)
was removed. yielding two geodesically incomplete manifolds with boundaries
given by the hypersurfaces ∂Ω1 and ∂Ω2. Finally, the boundaries were identified
up to an homeomorphism h : ∂Ω1 → ∂Ω2. Hence, the resulting manifold that is
defined by the connected sum M1#M2 is geodesically complete. The starting
point is the action

S =
ℓ
(3−d)
Pl

16π

∫

M

dd+1x
√
g (R− 2Λ) +

ℓ
(3−d)
Pl

8π

∫

∂Ω

ddx
√
γ K + σ

∫

∂Ω

ddx
√
γ,

where the first term is the usual Einstein-Hilbert action with a cosmological
constant Λ, the second term is the Gibbons-Hawking boundary term, KMN is
the extrinsic curvature, and σ is the intrinsic tension of the d-dimensional brane.
The spatial coordinates on ∂Ω can be taken to be the angular variables φi, which
for a spherically symmetric configuration are always well defined up to an overall
rotation. Generically, the line element of each patch can be written as

ds2 = −dt2 + A2(t)[r2dΩ2
(d−1) + (1− kr2)−1dr2],

where ǫ takes the values 1 (-1) for dS (AdS), Ω2
(d−1) is the corresponding metric

on the unit d−1-dimensional sphere, and t is the proper time of a clock measured
in the higher-dimensional spacetime. In order to analyze the dynamics of the
system, the brane is allowed to move radially. Let the position of the brane be
described by xµ(τ, φi) ≡ (t(τ), a(τ), φi), with τ the proper time (as measured by
co-moving observers on the brane) that parameterizes the motion, and the veloc-
ity of a piece of stress-energy at the brane satisfying uMuM = −1. With these
assumptions the brane will have an effective scale factor A2(t) = a2(t)A2(t).
The constraint

dτ

dt
= ±

√
1− (Aȧ)2

1− ǫa2
along with the result of the integration of EE across the boundary (done with
the junction conditions) [14] yields two differential equations for A and a. For
the case of a background composed by two patches of dS undergoing expansion,
A(t) = ℓ cosh(t/ℓ), and ǫ = 1, where ℓ2 = d(d− 1)/|Λ| is the dS radius. In this
case the EOM for the brane is

4π

L
(3−d)
p (d− 1)

σ =
±ȧ sinh(t/ℓ) + [aℓ cosh(t/ℓ)]−1(1− a2)

(1− a2 − [ℓȧ cosh(t/ℓ)]2)1/2
.

Nonsingular analytical solutions of this equation for σ = 0 can be obtained,
while for σ 6= 0, numerical methods must be used. This latter case also yields
bouncing solutions (see Fig.E.6) 60.

60Another model along this lines can be found in [374].
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Figure E.9.: Effective scale factor A(t) plotted for σ̄ = 4πσ/(L
(3−d)
p (d − 1)) =

10−4. The insert displays the dependence of A with σ̄. Taken from
[14].

The motion of a test brane in a background produced by a collection of branes
was discussed in [237] (the so-called mirage cosmology). Adopting spherically-
symmetric backgrounds, it was shown that although there is a singularity in
the evolution of the 4-d brane, the higher-dimensional geometry is regular. The
origin of the singularity on the brane is actually the embedding of the brane in
the bulk, in such a way that the singularity is smoothed out when the solution
is lifted to higher dimensions.

The effect of inflation on a bouncing brane was used in [20] to set limits on
the parameters of the braneworld. Specifically, the model consists of a closed
FLRW metric embedded in a 5-d conformally flat bulk with one extra timelike
dimension, containing a conformally coupled scalar field (the inflaton field) and a
radiation fluid, evolving on the brane with corrections due to the bulk. The non-
singular bouncing solutions considered were oscillatory and bounded, or initially
bounded. They are in principle stable and would never enter an inflationary
phase with an exponential growth of the scale factor since they correspond
to periodic orbits of the integrable dynamics in the gravitational sector. The
introduction of a massive scalar field, even in the form of small fluctuations,
turns non-integrable the dynamics of the system [20]. As a consequence, non-
linear resonance phenomena are present in the phase space dynamics for certain
domains of the parameter space of the models, and the associated dynamical
configurations become metastable, allowing the orbits escape to the de Sitter
infinity in a finite time. From the conditions for these orbits to happen, limits
on the parameters (σ,m,E0) are set, where σ is the brane tension, m is the mass

2090



of the scalar field, and E0 is a constant proportional to the total energy of the
fluid.
Yet another turn in the mirage model was introduced in [180], where the brane

moves in an open orbit around a non-trivial spherically-symmetric background.
In this model, the brane is moving on a Calabi-Yau manifold generated by a
heap of D3-branes, and the mirage effects dominate the evolution of the Universe
only at early time, i.e. when the brane moves in the throat of the background
manifold. The new feature is the influence of the angular momentum of the test
brane on its motion in the higher-dimensional space. In fact, the effective 4-d
metric has two parameters: the energy U and the angular momentum L of the
4-d brane, which determine the form of the orbit. In particular, to have an open
orbit in an asymptotically Minkowskian background,

L4 − 4(U + 2)U3 ≥ 0.

As discussed in [180], the effective metric corresponding to orbits satisfying this
constraint display cosmological contraction during the ingoing part of the orbit,
expansion during the outgoing part, and a bounce at the turning point 61.
Another model based on the brane scenario is the ekpyrotic universe [241],

the cyclic version of which shall be considered in Sect.E.10 62.

E.7. Variable cosmological constant

General Relativity allows for the introduction of only one arbitrary constant,
the so-called cosmological constant Λ. At least two attitudes can be taken
regarding Λ [334]. The first one is to consider it as a derived quantity, that
emerges from vacuum fluctuations (see for instance [425]). One way out of
the huge disagreement between theory and observation in this case [92] is to
assume that Λ is actually time-dependent. The second attitude that can be
adopted is that Λ is, along with G, a fundamental parameter of the theory,
to be determined by observation 63 [324]. In fact, from a gravitational point
of view what matters is the “effective” cosmological constant, since the matter
Lagrangian can sometimes contribute with a Λ-like term, as in the case of the
scalar field in the presence of a potential with a minimum:

Λeff = Λ+ V (φmin),

where Λ is the “bare” cosmological constant. Any change in φmin during the
evolution leads to changes in the value of Λeff . In fact, the effect of the evolu-
tion of the universe on the ground state is to add a temperature dependence,

61Further effects of the angular momentum on the motion of the brane, including cyclic
universes, were studied in [143].

62See [114] for an additional bouncing model using orientifolds.
63Notice that this second attitude is somewhat different from Einstein’s original ideas leading

to GR, since there would be curvature even in the absence of matter, caused by Λ.
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which can be translated into a time dependence [244]. A model along these lines
based on a gauge field (instead of a scalar field) was presented in [323] 64. This
is another motivation to consider a variable Λ, that is not a constant but a func-
tion of spacetime coordinates, in such a way that its value is determined by the
dynamics of the theory under scrutiny (following the line of reasoning of other
“variable constant” theories, see Section E.10.). In fact, a time-dependent cos-
mological constant has also been called upon to explain the current accelerated
expansion and the fact that this phase started in the recent past.
In the case of Λ = Λ(t), EE for the FLRW metric take the form

ȧ2

a2
=

1

3
ρ+

Λ(t)

3
− ǫ

a2
, (E.235)

ä

a
=

Λ(t)

3
− 1

6
(ρ+ 3p), (E.236)

and the continuity equation is given by

ρ̇+ 3
ȧ

a
(ρ+ p) = −Λ̇. (E.237)

As seen from Eqn.(E.237), Λ can supply or absorb energy from ordinary matter
and radiation. In fact, it follows from this equation that

TdS = −V dΛ. (E.238)

Hence, Λ is a source of entropy. Requiring that dS/dt > 0 implies dΛ/da < 0
through cosmic expansion.
Assuming that only radiation is present, Eqn.(E.237) gives

dρ

da
+
dΛ

da
+

4ρ

a
= 0,

which can be integrated to

ρ = ρ0

(a0
a

)4
− 1

a4

∫ a

a0

A4 dΛ

dA
dA, (E.239)

where ρ = ρ0 when a = a0, and the subindex 0 denotes quantities evaluated at
t = 0. Notice that the model is completely determined in this case by providing
the function Λ = Λ(a), since Eqn.(E.239) then yields ρ = ρ(a), and a = a(t)
follows from Eqn.(E.235). A cosmological model based on this scenario was
discussed in [332], where the dependence of Λ on a was fixed by imposing that
ρ = ρc for all values of t, where ρc = 3H2 is the critical density. It follows from
Eqn.(E.235) that

Λ =
αǫ

a2
. (E.240)

64In fact, any classical nonlinear field theory (such as nonlinear electromagnetism) admits a
fundamental state that generates a cosmological constant [325].
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The conditions Λ̇ ≥ 0 and ȧ ≥ 0 give ǫ > 0, hence ǫ = 1. In the model presented
in [332], at t = 0 the universe had only a nonzero cosmological constant. With
ρ0 = 0, Eqn.(E.239,E.240) give

ρ(a) =
α

a2

(
1− a20

a2

)
. (E.241)

Note that ρ0 = 0 implies that a0 6= 0, in such a way that the singularity at
t = 0 is absent. An estimation of a0 was made in [332] by assuming that the
maximum temperature reached is Tmax ∼MP l, which gives

a0 ∼
2.5√
N
× 10−20(GeV)−1,

where N = N(T ) is the effective number of degrees of freedom at temperature
T .
The fact that this model does not display a horizon problem was also shown

in [332]. In fact, the time tc at which global causality is established is given by

tc = a0 sinh
π

2
∼ 2.3a0,

which indicates that global causal connection was established at a very early
time. The model is also free of the monopole problem, but it is worth noting
that there is an inflationary period. From Eqn.(E.235) we get

a2 = a20 + t2. (E.242)

A peculiarity of this model is that a → ∞ for t → ∞, even though ǫ = 1.
Needless to say, other choices of Λ would give a different asymptotic behavior.
The same form of Λ, namely

Λ(t) =
γ

a(t)2
, (E.243)

where γ is a constant to be determined by observations, was studied in [415],
but without the assumption that ρ = ρc. The conservation equation (E.237)
can be solved for dust and radiation. Inserting the solution in Eqns.(E.235) and
(E.236) we get

ȧ2

a2
+

Υ

a2
=

1

3
ρ(i),

ä

a
= −1

6
ρ(i),

where Υ = ǫ− 2γ/3 for radiation, and Υ = ǫ− γ for dust, and ρ(i) is the energy
density of dust or radiation for the case Λ = 0. These equations show that
the effect of assuming that Λ ∝ a−2 is to shift the curvature parameter ǫ by a
constant value. A nonsingular cosmological model based on the model presented
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in [415] has been analyzed in [2]. Notice that Eqn.(E.243) along with condition
dΛ/da < 0 require that γ be positive. A positive Λ for all t implies, through
Eqn.(E.236) that there may be a zero in ȧ, and hence the possibility of a bounce.
For this to happen we need that ȧ be zero at the putative bounce. Supposing
there is a bounce, it follows from Eqn.(E.235) evaluated at the bounce that

α−1ρ0a
2
0 = ǫ− γ.

Hence, ρ0 > 0 implies that ǫ > γ > 0, and so ǫ = 1. Introducing the Ansatz
(E.243) in the Friedmann equation, we get

a2ȧ2 = (2γ − 1)(a2 − a20), (E.244)

so it follows that γ > 1/2. Hence, 1/2 < γ ≤ 1. This equation can be integrated
to get

a2 = (2γ − 1)t2 + a20,

which leads to bounded-from-above densities and temperature 65.
Yet another form for the dependence of Λ, given by

Λ = Λ1 + Λ2 a
−m,

where Λ1, Λ2 and m are constants (with Λ2 > 0), was studied in [283]. The
analysis of the dynamics was carried out using the analog of the one-dimensional
problem of the particle under the influence of the potential V (a) given by

V (a) = −Λ1δ
a2

α + 2
− Λ2δ

a2−m

α−m+ 2
+ ba−α,

where α = 1 + 3λ, δ = 1 + λ, b is a positive integration constant, and p = λρ.
Denoting by r the maximum of the potential, cyclic solutions are obtained for
the cases ǫ = 1 with Λ1, Λ2 > 0, and r > −1, and for Λ1 < 0, Λ2 > 0, and
m ≤ 2, regardless of the sign of ǫ.
The proposal in Eqn.(E.243) was later generalized in [21] to

Λ = 3βH2 +
3γ

a2
, (E.245)

where β and γ are dimensionless numbers, and H = ȧ/a. following [101]. With
this Ansatz, the Friedmann equation for a radiation-dominated phase can be
rewritten as

ȧ2 =
2γ − ǫ
1− 2β

+ A0a
−2+4β , (E.246)

which allows a bouncing solution at t = 0 for A0 < 0, β < 1/2, ǫ = 1 (with
ρ0 > 0). The value γ = 1 was chosen in [21] so that dS/da is always greater

65The evolution of perturbations in this model was studied in [1].
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than zero, thus solving the entropy problem. In this case, the model gives Ω < 1
for all t.
A thorough review of variable-Λ models has been presented in [331]. The

models analyzed were power-laws of the different relevant parameters, namely

Λ1 = At−ℓ, Λ2 = Ba−m, Λ3 = CHn, Λ4 = Dqr,

where A, B, C, D, ℓ, m, n, and r are constants. Let us state from [331] the
relevant results for this review: (1) no bouncing models were found for Λ1 with
k = 0 and ℓ = 1, 2, 3, 4, irrespectively of the sign of A. (2) For Λ2, it was shown
(numerically) that there are nonsingular models for dust, ǫ = 1, with m = 1,
Ω0 = 0.34, and 0.68 < Ω0Λ < 0.72, and also with higher values of m and Ω0.
(3) For Λ3, the value n = 2 admit analytical solution. For this n, there are
bouncing solutions for γ > 2/3 and ǫ = 1 with C > 3(3γ/2 − 1)Ω0, and also
for γ > 2/3 and ǫ = −1, for C < 3(3γ/2− 1)Ω0. (4) Only the value r = 1 was
explored for Λ4. Defining λ0 = −Dq0/3, there are closed bouncing solutions for
λ0 > −Ω0, and open bouncing solutions for λ0 < −Ω0.
The examples given above show that varying-Λ scenarios are worth examin-

ing because they address a number of pressing problems in cosmology (horizon
problem, entropy, initial singularity)66. Furthermore, many of them are simple
enough to draw definite conclusions about their viability. One of the drawbacks
is perhaps the lack of strong motivation for choosing any given form of Λ. In
this regard, let us remember that many of the varying-Λ models can be reverse-
engineered to scalar-field models with a potential. Unfortunately, in most cases
the corresponding models lack predictive power or clear particle physics moti-
vation [334].

E.8. Past-eternal universes

In this section, we shall examine some models which are nonsingular but do not
exhibit a bounce. Historically, perhaps the most important example of these
is the Steady-State model [68] 67. As mentioned in Sect.E.2.1, nonsingular
solutions that start from a deSitter state were discussed in [385, 164]. Another
example is that discused in [292] in which every contracting and spatially flat,
isotropic universe avoids the big crunch by ending up in a deSitter state enforced
by the limiting curvature hypothesis.

E.8.1. Variable cosmological constant

As noted in [260], in all the articles mentioned in Sect.E.7, the dependence of Λ
on a and ȧ was set either from ”first principles” (for instance quantum gravity,

66Nonsingular cosmological solutions for the case in which the cosmological constant is re-
placed by a second-rank tensor Λµ

ν were studied in [81].
67For an updated version, see Sect.E.10.2.
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as in [415]), or by extrapolating backwards current cosmological data, including
the current value of Λ. However, another view can be taken. Since Λ can be
considered as a remnant of a period of inflation, a complete model should also
describe the era of inflationary expansion. This is precisely the proposal in [260],
where Λ was taken as

Λ(H) = 3βH2 + 3(1− β)H
3

Hℓ

, (E.247)

whereHℓ is the timescale of inflation, and β is a parameter. Note that whenH =
Hℓ, Λ = 3Hℓ

2, as required by inflation, while Λ ∼ 3βH2 for large cosmological
times. In the case of ǫ = 0, and for

p = (γ − 1)ρ,

an equation for the Hubble parameter follows [260]:

Ḣ +
3γ(1− β)

2
H2

(
1− H

Hℓ

)
= 0,

whose solution is

H =
Hℓ

1 + Ca3γ(1−β)/2
,

where C is a γ-dependent integration constant 68. This equation can be inte-
grated to yield

Hℓt = ln

(
a

a∗

)
+

2C

3γ(1− β) a
3γ(1−β)/2,

where a∗ is an arbitrary value of the scale factor. It follows from this equa-
tion that the evolution of the universe starts from a deSitter stage a ∼ eHℓt

for Ca3γ(1−β)/2 << 1, and evolves towards a FLRW phase, a ∼ t2/3γ(1−β) for
Ca3γ(1−β)/2 >> 1.

E.8.2. Fundamental state for f(R) theories

A novelty in some theories described by Lagrangians that depend only on R is
the possibility of the emergence of an intrinsic cosmological constant. This is
not the case, however, in theories generated by Lagrangians that are a linear
combination of R2 and RµνR

µν as can be seen by a direct inspection of the EOM
(E.35). The proof of this assertion follows from the fact that the tensors χµν and
Zµν appearing in the EOM (E.27) are traceless in the case of a constant curvature
scalar (Rµν = Λ gµν). However, restricting to the f(R) case, Lagrangians that
are not linear in R2 can bypass such prohibition. The existence of a deSitter
solution in the absence of matter occurs when the function obeys the condition

f
′

f
= constant. (E.248)

68Here the value ǫ = 0 was chosen, but this restriction was lifted in [261].
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A typical example is provided by the exponential Lagrangian

f(R) = exp

(
R

2Λ

)
.

It follows straightforwardly from Eqn.(E.36) that Rµν = Λ gµν is a possible state
of the system.

E.8.3. The emergent universe

Another example of past eternal universe was given in [151]. This model uses
general relativity plus a scalar field with a potential, and matter. The relevant
equations are

φ̈+ 3Hφ̇+ V ′(φ) = 0,

ä

a
= −

[
1

2
(1 + 3ω)ρ+ φ̇2 − V (φ)

]
,

H2 = ρ+
1

2
φ̇+ V (φ)− ǫ

a2
.

From these, it follows that to have a minimum of the scale factor we need to
impose the conditions

1

2
(1 + 3ω)ρ+ φ̇2 < V (φ),

and
1

2
φ̇2
i + Vi + ρi =

ǫ

a2i
,

where the subindex i means that the quantities are evaluated at ti, the time at
which a is minimum. Assuming positive potentials and energy density, it follows
that only ǫ = +1 is allowed. It follows that

1

2
(1− ωi)ρi + Vi =

2

a2i
,

where Vi = Λi, and

(1 + ωi)ρi + φ̇2 =
2

a2i
,

so a model can be constructed with ρi = 0 and constant φ̇2. This can be achieved
in the limit t→∞ with the potential [151]

V (φ) = Vf + (Vi − Vf)
[
exp

(
φ− φf
α

)
− 1

]2
,

where φf is the value of the field for which V is minimum, and α is a constant
energy scale. In order to achieve the Einstein universe state in the far past, some
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fine-tunning on ai and φ̇i is needed, which is not necessarily a hindrance [151]69.
The choice of such a highly-symmetric state as the initial state is supported
by various arguments: it is stable against some types of inhomogeneous linear
perturbations 70, it has no horizon problem, it maximizes the entropy within
the family of FLRW radiation models, and it is the unique highest symmetry
non-empty FLRW model (with a 7 dimensional group of isometries). The model
was elaborated further in [153], where it was shown that an explicit form for
the potential can be found such that the model leaves the inflationary stage and
enters a reheating phase, followed by standard evolution.

E.9. Quantum Cosmology

As discussed in Sect.E.1, there are reasons to suppose that at very high energies
some of the hypotheses of the singularity theorems are rendered invalid: if the
universe ever attains this regime, an important role is to be played by quantum
gravitational effects, in such a way that a quantum theory of gravitation is
needed to have a proper description.

Although there is yet no complete realization of quantum gravity, there are
some attempts to tackle the singularity problem in a quantum framework. A
standard method of quantizing General Relativity is canonical quantization [199]
where the momentum and Hamiltonian constraint equations are interpreted
as operators, and it is required that they annihilate the quantum state. The
Hamiltonian constraint gives the Wheeler-DeWitt (WdW) equation [417], which
depends on the choice of the factor ordering in the products of generalized
momenta and “velocities”. For some choices of the ordering, the WdW equation
turns it into a Klein- Gordon equation on an indefinite DeWitt metric in the
infinite-dimensional superspace (space of three-metrics), with a potential term
[417]. In addition to the WdW equation, initial conditions must be specified, the
two most popular being the “no-boundary” [203], and the “tunnelling” condition
[410].

In practice, the infinite degrees of freedom of the superspace are truncated to
obtain a minisuperspace model, usually under the assumptions of isotropy and
homogeneity. Once a solution to the WdW equation has been found, there is
the question of how to interpret it and extract probabilities from it.

Among other issues related to the WdW equation, there is the fact that a
suitable initial condition must be chosen to get a solution. It would be desirable
that the initial condition be somehow determined by the dynamical law (see for
instance [62]). In fact, the most well-accepted proposals mentioned above do not
solve the singularity problem [23]. Moreover, in the quantization following the

69In particular, the initial scale factor could be chosen in such a way to avoid the quantum
gravity regime.

70But notice that it is not stable under homogeneous perturbations.

2098



ADM procedure, time is fixed by a gauge choice, and the results are dependent
of this choice [340] 71.
As we shall see below, there are other approaches to Quantum Cosmology

which may yield a nonsingular universe in the regime where the WdW equation
is valid. We shall discuss two possibilities: the Bohm-de Broglie interpretation
of QM, and Loop Quantum Cosmology (LQC).

E.9.1. The ontological (Bohm-de Broglie) interpretation

If the universality of quantum mechanics is assumed, the Universe must be
describable by a wave function (furnished by a yet-to-be-discovered quantum
theory of gravity and matter fields) in every step of its evolution. Moreover, this
description must have a well-defined classical limit. The orthodox interpretation
of Quantum Mechanics (the so-called Copenhagen interpretation) [221] is ill-
suited for the task of describing the universe, since it assumes the existence of
a “classical apparatus” external to the system to solve the measure problem by
forcing the collapse of the wave function. Clearly, there is no classical apparatus
outside the universe. Therefore, the least we can say is that an alternative to the
Copenhagen interpretation is needed. One such alternative that has received
some attention recently is that of Bohm and de Broglie (BdB)[59] 72. In classical
physics, the dynamics of a point in configuration space is determined by the
principle of extremal action, yielding the classical EOM. According to the BdB
interpretation, in quantum physics the evolution of the configuration variables is
guided by a quantum wave which obeys Schrödinger’s equation. The associated
Hamilton-Jacobi equation displays a new term (of quantum origin, see below),
that can be interpreted as part of the potential. It should be emphasized that
the BdB interpretation furnishes a framework to make predictions based on
the wave function of the system, which must be obtained by some means (for
instance, through the WdW equation).
Let us briefly review first the quantum mechanics of a single particle in the

BdB interpretation, and afterwards the results will be translated, mutatis mu-
tandis, to the context of FLRW cosmology. The Schrödinger equation for a
non-relativistic particle in a potential V is given by

i~
dψ(x, t)

dt
=

(
− ~2

2m
∇2 + V (x)

)
ψ(x, t).

With the replacement ψ = R exp(iS/~), this equation becomes

∂S

∂t
+

(∇S)2
2m

+ V − ~2

2m

∇2R

R
= 0, (E.249)

71In this regard, it was shown in [126] that a Bianchi I universe, quantized following the
ADM recipe with a particular choice of the time coordinate [269] in the presence of dust
is nonsingular.

72Other possibilities (not free of problems, though) are the many-worlds interpretation [156],
non-linear quantum mechanics [182], and decoherence [191].
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∂R

∂t
+∇.

(
R2∇S

m

)
= 0. (E.250)

This last equation suggests that ∇S/m can be interpreted as a velocity field,
leading to the identification p = ∇S, in such a way that Eqn.(E.249) is the
Hamilton-Jacobi equation for the particle in the classical potential V plus a
“quantum potential” Q = −~2∇2R/2mR. The BdB interpretation argues that
a quantum system is composed of a particle and a field, and that quantum parti-
cles follow trajectories x(t), independent on the existence of an ouside observer.
These trajectories can be determined from

m
d2x

dt2
= −∇V −∇Q,

or from p = mẋ = ∇S, after S and R are determined using Eqns.(E.249) and
(E.250). In practice, since S is the phase of the wave function, it can be read
off from the explicit solution of Schrödinger’s equation.
Let us analyze an example developed in [110], where the Lagrangian was given

by
L =

√−g (R − Cωφ,µφ,µ) ,
where Cω = (ω + 3

2
). From the metric

ds2 = −N3dt2 +
a(t)2

1 + (ǫ/4)r2
(
dr2 + r2dΩ2

)
,

and the definitions β2 = 4πℓ2P l/3V , φ̄ = φ
√
Cω/6, we get

H = N

(
−β2 p

2
a

2a
+ β2

p2
φ̄

2a3
− ǫ a

2β2

)
,

with pa = −aȧ/(β2N), pφ̄ = a3 ˙̄φ/(β2N). Defining ã = a/β, setting β = 1 and
α ≡ ln ã, we get

H =
N

2 exp(3α)

(
−p2α + p2φ − ǫ exp(4α)

)
, (E.251)

where

pα = − α̇e
3α

N
, pφ =

φ̇e3α

N
.

Notice that pφ = k̄ is a constant of the motion. We shall restrict to the case
ǫ = 0 since it is analytically tractable. The classical solutions are given by

a = 3k̄t1/3, φ =
1

3
ln t + c2,

where c2 is an integration constant. Depending on the sign of k̄, this solution
contracts to or expands from a singularity.
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The Wheeler-DeWitt equation corresponding to the Hamiltonian given in
Eqn.(E.251) is given by [110]

−∂
2Ψ

∂α2
+
∂2Ψ

∂φ2
+ ǫ e4αΨ = 0.

The solution, obtained by separation of variables, reads

Ψ(α, φ) =

∫
F (κ)Aκ(α)Bκ(φ)dκ,

where κ is a separation constant, F (κ) is an arbitrary function of κ,

Aκ(α) = a1 exp(iκα) + a2 exp(−iκα),

(for ǫ = 0), and

Bκ(φ) = b1 exp(iκφ) + b2 exp(−iκφ).
A direct application of the formalism sketched for the case of a one-particle
system, generalized to several degrees of freedom yields from the Hamiltonian
(E.251) [110]

Q(α, φ) =
e3α

2R

(
∂2R

∂α2
− ∂2R

∂φ2

)
,

with the “guidance relations”

∂S

∂α
= −e

3αα̇

N
,

∂S

∂φ
=
e3αφ̇

N
.

A state is now needed to read off from it S and R. A Gaussian superposition
was chosen in [110], given by

Ψ(α, φ) =

∫
FκBκ(φ)[Aκ(α) + A−κ(α)] dκ,

with

F (κ) = exp

(
−(κ− d)

2

σ2

)
.

and a2 = b2 = 0. Performing the integration in κ, we can extract from the
result the phase S which, when inserted into the guidance relations (in the
N = 1 gauge) furnishes a planar system:

α̇ =
φσ2 sin(2dα) + 2d sinh(σ2αφ)

exp 3α (2(cos(2dα) + cosh(σ2αφ)))
, (E.252)

φ̇ =
−ασ2 sin(2dα) + 2d cos(2dα) + 2d cosh(σ2αφ)

exp 3α (2(cos(2dα) + cosh(σ2αφ)))
. (E.253)
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Figure E.10.: Field plot of the planar system (E.252)-(E.253) for σ = d = 1.
Taken from [110].

The plot of this system (see Fig.E.10) shows that there are bouncing trajectories
for α > 0, and also oscillating universes near the centre points (white points in
the plot). The BdB interpretation has been applied to mini-superspace models
in Quantum Cosmology (see for instance [6, 340]), and non-singular solutions
have been found for models with scalar fields or radiation [157]. The bounce is
due to the action of the quantum potential, which generates a repulsive “quan-
tum force”, large enough to reverse the collapse.
One of the advantages of this formulation is that, starting from WdW equa-

tion, it yields a dynamics that is invariant under time re-parameterizations.
Notice however that the results are dependent on the state chosen to represent
the system.

E.9.2. Loop Quantum Gravity

Loop Quantum Gravity is a background-independent, non-perturbative canon-
ical quantization of gravity in which the classical metric and the extrinsic cur-
vature are turned into operators on a Hilbert space [360]. The classical descrip-
tion of space-time is replaced by a quantum counterpart, in such a way that
quantum effects are important at very short scales, for instance near putative
singularities. In this scenario, the evolution of the universe is divided in three
epochs. First there is a quantum epoch with high curvature and energy, de-
scribed by difference equations for the wave function of the universe. These are
a direct consequence of the discreteness of space and time, the step size being
dictated by the lowest non-zero eigenvalue of the area operator (see [62]). It
is this discreteness that modifies the behavior near the singularity, leading to
a theory that is not equivalent to the WdW description (even in the isotropic
case), which furnishes a continuous spectrum for the scale factor. A semiclassi-
cal epoch follows, with differential equations for matter and geometry modified
by non-perturbative quantization effects. Finally, a classical phase is reached,
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described by the usual cosmological equations.
Since difference equations are often difficult to analyze or to solve explicitly,

and at such a fundamental level, the emergence of space-time in inhomogeneous
models with many degrees of freedom from the underlying quantum state is
hard to understand, a suitable strategy is to use special models allowing exact
solutions. Care must be taken in the extension of results from particular exam-
ples to more general cases. In any case, it may be instructive to have a detailed
understanding of how the singularity is resolved in some instances.
Yet another convenient simplification is to work in an effective semiclassical

theory, which takes into account only some quantum effects. This theory can be
understood as governing the motion of a wave packet that solves the difference
equation [64], and can be obtained as an asymptotic series of correction terms
to the equations of motion in the isotropic case [65]. For instance, in the case
of a matter term generated by a scalar field under the influence of a potential,
the effective Klein-Gordon equation is [378]

φ̈ = φ̇

(
−3H +

Ḋ

D

)
−DV ′(φ), (E.254)

where

D(q) =

(
8

77

)6

q3/2{7[(q+1)11/4−|q−1|11/4]−11q[(q+1)7/4}−|q−1|7/4sgn(q−1)]}6,

with q = a2/a2∗ and a2∗ = γℓ2P lj/3, where γ ≈ 0.13, and j is a quantization
parameter, which takes half-integer values. This equation represents an approx-
imate expression for the eigenvalues of the inverse volume operator [61]. The
function D varies as a15 for a≪ a∗, has a global maximum at a ≈ a∗, and falls
monotonically to D = 1 for a > a∗. In turn, the effective Friedmann equation
is given by

ȧ2

a2
+

ǫ

a2
=

1

3

(
φ̇2

2D
+ V (φ)

)
, (E.255)

and the effective Raychaudhuri equation is

ä

a
= −1

3
φ̇2

(
1− Ḋ

4HD

)
+

1

3
V (φ). (E.256)

These approximations are valid for ai < a < a∗, where ai =
√
γ ℓP l. Below

ai the quantum nature of spacetime cannot be replaced by an effective theory,
while above a∗ we recover classical cosmology. It was shown in [378] that a
closed universe with a minimally coupled scalar field will bounce (avoiding the
so-called big crunch) as soon as a ≈ a∗ for any choice of the initial conditions.
The bounce in this case is due to the change of sign of the “friction” term in
Eqn.(E.254), which becomes frictional for a << a∗, freezing the field φ in some
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constant value, and turning the effective EOS into a cosmological constant EOS
[378]. Similar results were obtained in the case of anisotropic models [63].
The previous example incorporated quantum gravitational effects on the mat-

ter (represented by a scalar field) Hamiltonian, but there may also be modifi-
cations of the gravitational Hamiltonian due to quantum geometry. Recently,
some calculations illustrating the effects of quantum geometry on both the grav-
itational and matter Hamiltonians were carried out in the case of a spatially
homogeneous, isotropic ǫ = 0 universe with a massless scalar field (a system
which is singular both classically and according to the WdW formalism in the
Copenhagen interpretation of QM). It was shown in [23] that the singularity is
resolved in the sense that a complete set of Dirac observables on the physical
Hilbert space remains well-defined throughout the evolution; the big-bang is
replaced by a big-bounce in the quantum theory due to the quantum correc-
tions to the geometry; there is a large classical universe on the ”other side”, and
the evolution bridging the two classical branches is deterministic, thanks to the
background independence and non-perturbative methods 73. Notice also that no
boundary condition was imposed (it was asked instead that the quantum state
be semiclassical at late times) 74.
Surely the major limitation in all the analysis of LQC is that, since a sat-

isfactory quantum gravity theory which can serve as an unambiguous starting
point is not available yet, the theory is not developed by a systematic truncation
of full quantum gravity. Another limitation is the restriction to isotropy and
homogeneity.

E.9.3. Stochastic approach

A different approach was introduced in [315], which starts from the observation
made in [277] that the universe could be enlarged through an “analytic exten-
sion”. In [277], such an extension is achieved from the geometrical construction
of a semiclosed universe, namely a closed Friedmann model extended by gluing
a given geometry to the FLRW before the maximum expansion. This gluing can
be done in different ways, through the junction conditions. In [277] an asymp-
totically flat geometry was chosen. A collection of this configuration (called
friedmon in [315]) was considered in [315], in such a way that each member of
the collection perceives the remaining systems as a perturbative effect of ran-
dom character, as in a stochastic process. Noting that in the case of an open
universe, the Friedman equation takes the form of the energy conservation for
a harmonic oscillator, namely

ȧ2 +
1

3
Λa2 = 1,

73In a subsequent paper the Hamiltonian was modified to forbid the bounce at low densities
[24].

74An analysis along the same lines was carried out in [405] for the case ǫ = −1, and it was
shown that the singularity is avoided too.
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a Hamiltonian can be defined by setting q = a, p = ȧ, and the quantum theory of
the harmonic oscillator can be developed according to [305]. A straightforward
calculation leads to the result

E[a2(t,W )] = a2Cl +
1

2

√
3
~

Λ
,

where E is the expectation value, aCl is the classical value of a, and W is the
white noise associated to the stochastic process. One arrives at the result that
the net effect of the environment is to preclude the collapse of the model, the
minimum of the radius being large if Λ is small.

E.10. Cyclic universes

Oscillating universes have been explored in several contexts in an attempt to
solve some problems of the standard cosmological model. The first example
of such universes was that presented in the seminal paper by Lemâıtre [254],
who stated that “The solutions where the universe successively expands and
contracts, periodically reducing to an atomic system with the dimensions of
the solar system, have an incontestable poetic charm, and bring to mind the
Phoenix of the legend” [254] 75. Let us briefly recall some of the issues of the
standard model and the solution that oscillating models can provide:

• The flatness problem. The Friedmann equation can be written as

|Ωtot(t)− 1| = |ǫ|
a2H2

,

As already discussed in Section E.1, in a situation in which the universe
is dominated by matter or radiation, the difference |Ωtot(t)−1| grows as a
power of t. Since present data indicate that Ωtot is very close to 1, it must
have been incredibly close to one far in the past, if Ωtot 6= 1 initially. This
is the so-called flatness problem. As we shall see below, in a cyclic universe
Ωtot starts deviating from 1 only when a approaches its maximum. Since
the maximum grows with the number of cycles, in a sufficiently old cyclic
universe it may take a long time for Ωtot to deviate from 1 [138].

• The horizon problem. In the SCM, light signals can propagate only a finite
distance between the initial singularity and a given time t, provided the
energy density changes faster than a−2. Hence, microphysics would not
have enough time to take the universe to its high degree of homogeneity.
In the cyclic model the age of the universe is given by the sum of the
duration of all the previous cycles. This would solve the horizon problem,
provided correlations safely traverse the bounce.

75Note however that Lemâıtre did not produce an explicit solution for the cyclic universe.
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Some implementations of the cyclic model may also solve the so-called “coin-
cidence problem” (why did the universe begin its accelerated expansion only
recently?). The model in [420] has its parameters tuned in such a way that the
fraction of time that the universe spends in the coincidence state is comparable
to the period of the oscillating universe.

Oscillating models have been also used to explain the observed values of the
dimensionless constants of nature. In [380], the value of these constants is
randomly set after a bounce (see also [290]). In order to see whether cos-
mological evolution establishes any trend in the behaviour of the “constants”,
cyclic models were studied in [37] as solutions of varying-constants theories,
such as the varying α theory presented in [367], the Brans-Dicke theory, and the
variable-speed-of-light theory [275] 76. The cyclic solutions were studied both
for non-interacting and interacting scalar field (which models evolution of the
“constant”) plus radiation, and the bounce was caused by negative-energy scalar
fields. In all three theories, the models showed monotonic changes in the con-
stants from cycle to cycle (the scale factor qualitatively behaving as explained
in [35]).

E.10.1. Thermodynamical arguments

The existence of oscillatory solutions in the FLRW model was shown by Tolman
(see [396] and references therein). His argument can be understood from a purely
mechanic point of view, by modelling the Friedmann equation as a one-particle
system: examination of the effective potential for a closed universe shows that
there are oscillatory solutions for some values of the parameters of the model
(assuming that there is a mechanism to revert the contraction into expansion
before the singularity). These solutions are permitted from a thermodynamical
point of view, since the matter term in the FLRWmodel is a perfect fluid, whose
entropy is constant. Hence the expansion is reversible, although at a finite rate.
In more realistic models however, entropy generation is inevitable, arising from
various sources (such as viscosity effects from particle creation). However notice
that, as discussed in [396], the entropy of each element of the fluid need not
attain a maximum, as would be the case in an isolated thermodynamical system,
because the energy of the fluid element is not constant. In fact, each time a
given element of fluid returns to the same volume, its energy density is higher
than in the previous passage through the same volume, due to a lag behind
equilibrium conditions. The increment in the entropy leads to non-reversibility,
which forbids identical oscillations. As a consequence of the raising energy
density, the maximum value for a grows in each cycle 77. This can be easily seen

76A word of caution regarding this latter type of theory was issued in [152].
77Notice that in these considerations neither the mechanism that allows safe passage through

the singularity nor the details of the entropy generation are given.
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from Friedmann equation, taking the case Λ = 0, ǫ = 1 as an example:

ȧ2 + 1 =
1

3
ρa2.

After one cycle, the 3-volume goes back to a value it had before when a does.
Since ρ grows with the number of cycles, this growth can only be attributed to
an increment in ȧ. Hence a sufficiently “old” cycle is strongly peaked, and Ωtot
remains close to 1 until a is very near the maximum, thus yielding a solution to
the flatness problem.
Starting from the fact that the entropy of the universe today is finite, and
making the reasonable hypothesis that the increment in the entropy through
each bounce shares this property, Zeldovich and Novikov [427] among others
(see [133]) have estimated the number of cycles back to an initial state (which
should not be singular, to keep the idea of a cyclic universe attractive).
To move from qualitative arguments to actual calculations, the key issue is the

production of entropy. The irreversible energy transfer from the gravitational
field to particle generation was the source of entropy considered in [347], while
it was suggested in [193, 124] that black hole evaporation could be responsible
for the entropy growth. An analytical study that showed the correctness of Tol-
man’s arguments was presented in [35], where closed Friedmann universes with
Λ 6= 0 were scrutinized, including an ad-hoc mechanism of entropy generation,
and assuming that there is a bounce, without entering in the details of its real-
ization. The entropy growth was implemented by relating the constant coming
from the conservation laws

ρia
α = const. = Ci,

where i denotes radiation or dust, and α = 4 or 3 respectively, to the expression
for the entropy in each case. Let us take the case of radiation, in which

Sr = constant =
8

3
π2βT 3a3,

so we can set T 3a3 = const. = γ. From this equation and the conservation law
it follows that

Cr =
Gγ1/3

πc4
Sr,

thus linking the increment in entropy to the change in the constant appearing
in the solution. In the same way it is shown that Cm is related to Sm through
a similar expression. In [35] it was assumed that the entropy is constant within
a cycle, but increases at the beginning of each cycle through the increment in
the constants Cr and Cm. The behaviour of models with different combina-
tions of matter, radiation and cosmological constant were studied for positive
and negative Λ. The results show that for Λ > Λc (where Λc = Λc(Cr, Cm))
the universe stops its oscillations with increasing maximum and starts an ever-
expanding phase (see Fig. E.11). In other words, when the oscillations become
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large enough the cosmological constant dominates over the matter and radia-
tion terms, the oscillations cease, and the universe enters a deSitter regime. If
Λ < Λc, the oscillations are not interrupted. Oscillations in anisotropic models

Figure E.11.: The plot shows that transition of a Λ > 0, radiation-filled universe
from the oscillating phase to the ever-expanding phase, due to the
growth of entropy (given by the increment in λn =

√
4CrnΛ/3).

Taken from [35].

were also studied in [35], paying attention to the question of isotropization after
a large number of oscillations. As the entropy increases, the volume of Bianchi
I universes with Λ < 0 oscillates with growing maximum amplitude, while the
shear anisotropy vanishes 78.
A more sophisticated model was studied in [106], where FLRW two-fluid

out of equilibrium models were considered. Exact solutions were found for a
particular cases of the energy exchange, conserving the total energy. In the case
of nonzero spatial curvature, cyclic models were shown to exist. The energy
exchange between the fluids was modelled by a function s such that

ρ̇+ 3Hγρ = s, ρ̇1 + 3HΓρ1 = −s,

where γ− 1 and Γ− 1 are the EOS parameters of each fluid . Solutions of these
equations along with

H2 = ρ+ ρ1 −
ǫ

a2

were found in [106] for different forms of s, for the cases radiation and dust,
radiation and scalar field, and radiation and negative vacuum energy. In the
second case, a new feature appears (as well as the “runaway stage” mentioned

78Axisymmetric Bianchi type IX, dust Kantowski-Sachs, Bianchi IX, and some features of
inhomogeneous cyclic cosmological models were also studied in [35].
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in [35]): the increment in magnitude of the minima in the scale factor as time
increases. This was interpreted by the authors as a consequence of the energy
exchange: the scalar field reached negative energy values after transferring en-
ergy to radiation. Surely this behaviour depends on the specific form of the
function s. The examples studied in [106] suggest that caution is needed when
it is said that cyclic models can solve the flatness problem, since in some of
them the cycles cannot become indefinitely large and long-lived, while in others
the minimum of the expansion increases.

E.10.2. Realizations of the cyclic universe

We present in this section some concrete examples of theories that yield cyclic
regular solutions (i.e. which actually bounce at the minimum of the expansion
without presenting singularities), along with some of its successes and conun-
drums.

Changes in the matter side of EE

One way to generate a cyclic universe is to add matter that will certainly produce
a bounce, and consider next what conditions are to be imposed on it to produce
oscillations. A necessary condition that the extrema of the expansion factor
must satisfy is given by H = 0, with

H2 =
8π

3M2
Pl

(ρ− f(ρ)).

This amounts to ρ− f(ρ) = 0, where the function f(ρ) is positive. A cyclic uni-
verse has been generated along this line in [119], where “wall-like” and “string-
like” matter (whose energy scales as a−1 and a−2 respectively) generate the
required f(ρ) 79. These rather exotic sources can be also thought as originating
from scalar fields under the influence of a potential, using the procedure pre-
sented in [33]. A modification of the Friedmann equation coming from brane
models was used to fix the form of f(ρ) in [82], where

H2 =
8π

3M2
p

(
ρ− ρ2

2|σ|

)
, (E.257)

see Sect.E.6. The dominant component in this model is the so-called “phantom”
matter, which has an energy-conditions-violating equation of state characterized
by

ωQ =
pQ
ρQ

< −1.

79Earlier attempts along these lines, imposing that p ∝ −a−n, and ρ = p ∝ −a−6 are
respectively given in [333] and [358]. For a somewhat different approach, see [213, 424].
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Since the energy density of matter with state parameter ω scales with the ex-
pansion as

ρ = a−3(1+ω),

we see that ρ grows with the expansion. Surely before reaching an infinite en-
ergy density, quantum gravity effects will take over the evolution. The somewhat
paradoxical situation arises in which very high-density effects must be incorpo-
rated in the description of the universe for both very small and very large values
of the scale factor. The central idea in [82] is that the same physics causes then
the bounce and the turnaround, both governed by Eqn.(E.257). After a bounce,
the universe follows the standard evolution until the phantom energy dominates.
This energy may erase every trace of structure [92], and dominates the evolution
until high-density effects are again important, producing the turnaround. As
will be discussed in Sect.E.10.3, one of the problems to be faced in the collapsing
phase is the merging of black holes into a “monster black hole”. The energy
density the universe must reach in order that black holes are torn apart was
shown in [82] to be

ρbr ∝M4
P

(
MP

M

)2
3

32π

1

|1 + 3ωQ|
.

This energy density must be reached before the turnaround, characterized by
ρta = 2|σ|. The value σ ≈ mGUT is enough for all but Planck-mass black holes to
be torn apart (some of them evaporate before the universe enters the phantom
energy stage). These Planck-mass remnants may help in explaining the dark
matter puzzle [82] 80. Some problems still remain in this model. First, the
generation of structures in the contracting phase needs to be addressed, to see
that the black hole problem does not recur. Second, as stated before, entropy
production would lead actually to quasi-cyclic evolution.
A similar model has been studied in [383], given by

H2 =
1

3
ρ+ νρ2 +

Λ

3
, (E.258)

where ν is a real constant. Analytical solutions of this equation have been found
in the case of dust, and their generic feature seems to be the replacement of the
initial singularity by a bounce, some solutions displaying also a cyclic behaviour
(those for Λ ≤ 0 and ν < 0).
An interesting twist to the entropy problem in cyclic universes was introduced

in [43], where a model described by Eqn.(E.258) was studied, with the cosmo-
logical constant replaced by a dark energy component with EOS p = ωρ and
ω < −1, matter and radiation as normal components, and ν < 0. The model
takes advantage of the Big Rip phenomenon, where bound systems become un-
bound and their constituents causally disconnected as a result of the increasing

80Details about the evolution of this model and its relation with the so-called coincidence
problem can be found in [420].
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value of the dark energy density. As a consequence of the Big Rip, the universe
would disintegrate in a huge number of disconnected patches. The new ingre-
dient of the model is that the turnaround is placed an instant before the “total
Big Rip”, when each patch would contain almost no matter at all, and only a
small amount of radiation [44] and dark energy. Due to the Big Rip, the huge
entropy of the universe is distributed between the enormous number of patches,
hence leaving each patch with very low entropy. The subsequent contraction
of each patch is free of “formation of structure” problems, and proceeds until
a bounce occurs. After the bounce, a normal inflationary phase follows (vastly
increasing the entropy), and the cycle starts again.

Cyclic universes in nonlinear electrodynamics

As discussed in Sect.E.4.5, nonlinear electrodynamics can describe a nonsingular
universe. Here it will be shown how a cyclic model arises from the theory given
by the Lagrangian [328]

L = −1
4
F + αF 2 − γ2

F
(E.259)

where α and γ are constants, with the dependence of the magnetic field on the
scale factor given by H = H0/a

2 (see Eqn.(E.208). The time-evolution of the
scale factor can be qualitatively described by the effective potential, which arises
from Friedmann equation written as a “one-particle” system. For the case at
hand, the effective potential is given by

V (a) =
A

a6
− B

a2
− Ca6. (E.260)

The constants in V (a) are given by

A = 4αH
4
0 , B =

1

6
H

2
0 , C =

γ2

2H 4
0

,

and are all positive. The analysis of V (a) and its derivatives implies solving
polynomial equations in a, which can be reduced to cubic equations through the
substitution z = a4. The existence and features of the roots of such equations
are discussed in [55]. A key point to the analysis is the sign of D, defined as
follows. For a general cubic equation

x3 + px = q,

the discriminant D is given by

D =
(p
3

)3
+
(q
2

)2
.

We will denote by DV the discriminant corresponding to the potential and
DV ′ that of the derivative of V. From the behaviour of the potential and its
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derivatives for a → 0 and a → ∞ we see that only one or three zeros of the
potential are allowed. The case of interest here (given by DV > 0, DV ′ = 0) is
plotted in Fig. E.12, which shows the qualitative behavior of the potential for
typical values of the parameters. The model is nonsingular for any value of ǫ,

0

V

1

a

Figure E.12.: Qualitative plot of the effective potential for DV > 0, DV ′ = 0.
The lower dotted line corresponds to ǫ = 1.

and a cyclic model is obtained for ǫ = 1.
This setting was generalized in [329], where the Lagrangian

LT = α2 F 2 − 1

4
F − µ2

F
+
β2

F 2
. (E.261)

was considered, with α, β and µ constants. As shown in [329], four distinct
phases can be described with this Lagrangian: a bounce, a radiation era, an ac-
celeration era and a turnaround. This unity of four stages, christened tetraktys in
[329], constitutes an eternal cyclic configuration. The cyclic behavior is a mani-
festation of the invariance under the dual map of the scale factor a(t)→ 1/a(t),
a consequence of the corresponding inverse symmetry of the Lagrangian (E.261)
wrt the electromagnetic field (F → 1/F, where F ≡ F µνFµν). Restricting to
a magnetic universe, as defined in Sect.E.4.5, the Lagrangian LT yields for the
energy density and pressure given in equations (E.186-E.187):

ρ = −α2 F 2 +
1

4
F +

µ2

F
− β2

F 2
, (E.262)

p = − 5α2

3
F 2 +

1

12
F − 7µ2

3

1

F
+

11β2

3

1

F 2
. (E.263)

As we saw in Sect.E.4.5, for any Lagrangian that is a polynomial in F ,

H = H0 a
−2.

As discussed in [329], the combined system of equations of the FLRWmetric and
the magnetic field described by General Relativity and NLED, are such that the
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negative energy density contributions coming from L1 and L4 never overcome
the positive terms arising from L2 and L3. Before reaching undesirable negative
energy density values, the universe bounces (for very large values of the field) and
bounces back (in the other extreme, that is, for very small values) to precisely
avoid this difficulty. These events occur at the values ρB = ρTA = 0, which
follow from Friedmann’s equation in the case ǫ = 0. Notice that this is not
an extra condition imposed by hand but a direct consequence of the dynamics
described by LT .
Let us now turn to the generic conditions needed for the universe to have a

bounce and a phase of accelerated expansion. From Einstein’s equations, the
acceleration of the universe is related to its matter content by

3
ä

a
= −1

2
(ρ+ 3p). (E.264)

In order to have an accelerated universe, matter must satisfy the constraint
(ρ+ 3p) < 0, which translates into

LF >
L

4H 2
. (E.265)

It follows that any nonlinear electromagnetic theory that satisfies this inequal-
ity yields accelerated expansion. In the present model, the terms L2 and L4

produce negative acceleration and L1 and L3 yield inflationary regimes (ä > 0).
Raychaudhuri’s equation imposes further restrictions on a(t) at a bounce. In-
deed, the existence of a minimum (or a maximum) for the scale factor implies
that at the bounce point B the inequality (ρB + 3pB) < 0 (or, respectively,
(ρB + 3pB) > 0) must be satisfied. Note that, as already mentioned, at any ex-
tremum (maximum or minimum) of the scale factor the energy density is zero.
Four distinct periods can be identified according to the dominance of each term
of the energy density. The early regime (driven by the F 2 term); the radiation
era (where the equation of state p = 1/3ρ controls the expansion); the third
accelerated evolution (where the 1/F term is the most important one) and fi-
nally the last era where the 1/F 2 dominates and in which the expansion stops,
the universe bounces back and starts to collapse. The bounce (for an Euclidean
section) was discussed in Sect.E.4.5. The standard, Maxwellian term dominates
in the intermediate regime. Due to the dependence on a−2 of the field, this
phase is defined by H 2 >> H 4 yielding the approximation

ρ ≈ H 2

2

p ≈ H 2

6
(E.266)

When the universe becomes larger, negative powers of F dominate and the
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energy density becomes typical of an accelerated universe, that is:

ρ ≈ 1

2

µ8

H 2

p ≈ −7
6

µ8

H 2
(E.267)

In the regime between the radiation and the acceleration eras, the energy content
is described by

ρ =
H 2

2
+
µ2

2

1

H 2
,

or, in terms of the scale factor,

ρ =
H 2

0

2

1

a4
+

µ2

2H 2
0

a4. (E.268)

For small a it is the ordinary radiation term that dominates. The 1/F term
takes over only after a =

√
H0/µ, and grows without bound afterwards. Using

this matter density in Eqn.(H.22) gives

3
ä

a
+

H
2
0

2

1

a4
− 3

2

µ8

H 2
0

a4 = 0.

To get a regime of accelerated expansion, we must have

H 2
0

a4
− 3

µ8

H2
0

a4 < 0,

which implies that the universe will accelerate for a > ac, with

ac =

(
H4

0

3µ8

)1/8

.

For very large values of the scale factor, the energy density can be approximated
by

ρ ≈ µ2

F
− β2

F 2
(E.269)

and the model goes from an accelerated regime to a phase in which the acceler-
ation is negative. When the field attains the value FTA = 16α2µ2 the universe
stops expanding and turns to a collapsing phase. The scale factor attains its
maximum value

a4max ≈
H 2

0

8α2µ2
.

Analytic forms for the scale factor in each regime can be found in [329].
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Cyclic universes in loop quantum gravity

There are realizations of cyclic models in the effective equations for loop quan-
tum gravity (some features of which have been presented in Sect.E.9.2). As
discussed in Sect.E.9.2, the Klein-Gordon equation for a scalar field under the in-
fluence of a potential, the Friedmann and Raychaudhuri’s equations in the semi-
classical regime are modified due to quantum gravity effects (see Eqns.(E.254-
E.256)). It was shown in [258] that positively curved universes sourced by
a massless scalar field can undergo repeated expansions and contractions due
to the modifications described above. This was achieved by rewriting Eqns.
(E.254-E.256) in the form of the classical FLRW model with the addition of
matter described by an effective equation of state, given by

ω ≡ peff
ρeff

= −1 + 2φ̇2

φ̇2 + 2DV

(
1− 1

6

d lnD

d ln a

)
.

A violation of the null energy condition, leading to a bounce, is accomplished
when ω < −1, which amounts to d lnD/d lna > 6, or a < 0.914a∗ [258], with

D(q) =

(
8

77

)6

q3/2{7[(q+1)11/4−|q−1|11/4]−11q[(q+1)7/4}−|q−1|7/4sgn(q−1)]}6,

with q = a2/a2∗ and a2∗ = γℓ2P lj/3, where γ ≈ 0.13, and j is a quantization
parameter, which takes half-integer values. When V = 0, ω is independent of
the kinetic energy of the field, and an oscillatory behaviour follows. The addition
of a potential leads to the interruption of the cycles as soon as the potential
dominates the motion (in analogy to what was discussed in Sect.E.10.1 for the
cosmological constant), and a period of inflation may follow [258]. This analysis
was later extended to the case of spatially flat universes, with both negative an
positive potentials [297, 379].
Yet another realization of a cyclic universe in this scenario is the so-called

emergent universe from a loop [298]. As mentioned in Sect.E.8.3, the Einstein
universe is unstable, so perturbations drive the universe away from this state.
This situation partially changes when loop quantum gravity corrections are con-
sidered. Using a phase-space analysis, it was shown in [298] that a new static
solution appears in the semiclassical regime (a < a∗) for positive potentials (for
V < 0 this is the only solution). This new solution (called loop static, LS) is sta-
ble, and the universe oscillates around it, for V < V∗, with V∗ = 39/(136πl2P la

2
∗),

while for V > V∗, the equilibrium point corresponding to LS merges with that
of the Einstein universe. So in the model proposed in [298], the universe is ini-
tially at, or in the neighbourhood of the static point LS, with φ in the plateau
region of the potential with φ̇i > 0. After undergoing a series of non-singular
oscillations in a (possibly) past-eternal phase, while the field evolves monotoni-
cally along the potential, the cycles are eventually broken as the magnitude of
the potential increases, and the universe enters an inflationary epoch. For this
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model to work, the potential must be such that dV/dφ→ 0 for φ → −∞, and
increase monotonically to exit the cycles 81. An example of a suitable potential
is given by

V = α
[
exp(βφ/

√
3)− 1

]2
,

where α and β are parameters that may be constrained by the CMB spectrum.
As in the case of the classical emergent universe discussed in Sect.E.8.3, there
are some fine-tuning issues: the scalar field must start in the asymptotically
low-energy region of V .

The cyclic universe based on the ekpyrotic universe

The starting point of the ekpyrotic scenario [241] is five-dimensional heterotic M-
theory [211], where the fifth dimension terminates at two boundary Z2 branes,
one of which is identified with the visible universe. There are two different
versions of the ekpyrotic scenario, the old [240], where there is a bulk brane
between the boundary branes and the new [242], where only the boundary branes
are present [349]. The initial state in both cases is supposed to be the vacuum
state, where the branes are flat, parallel and empty. The branes are drawn
together by the action of an attractive potential, and collide inelastically over
cosmological times. Part of the kinetic energy is transferred to the branes and
used to create matter and radiation. After the collision, the universe enters
a “standard” big bang phase, until dark energy domination at the end of the
matter era, which causes an accelerated expansion, diluting the content of the
universe. The whole process can be described by a 4-d effective theory, with the
action (in the Einstein frame) given by

SE =

∫
d4x
√−g

(
1

2
R− 1

2
(∇ϕ)2 − V (ϕ)

)
,

plus higher-order corrections, where the conveniently-tailored potential V (ϕ)
is responsible for the main features of the model. The potential is slightly
positive for ϕ > 0, and goes to zero as ϕ→ −∞. For ϕ < 0, the potential has a
minimum and is very steep and negative. The minimum corresponds to the close
approach of the branes, which happens at such short distances that quantum
gravity effects are relevant. The field ϕ moves rapidly through the minimum,
and the branes collide as ϕ → −∞. Both the old and the new model were
shown to have problems due to excessive fine-tuning [226], so a cyclic version
was introduced [387].
In the cyclic ekpyrotic model, it is assumed that the interbrane potential is the

same before and after collision (instead of being zero, as in the non-cyclic model).
After the branes bounce and fly apart, the interbrane potential ultimately causes
them to draw together and collide again. To ensure cyclic behavior the potential

81Other constraints are imposed by succesful reheating.
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must vary from negative to positive values [387]. The model may be adjusted
in such a way that, at distances corresponding to the present-day separation
between the branes, the inter-brane potential energy density is positive and cor-
responds to the currently observed dark energy, providing roughly 70% of the
critical density today. The cosmic acceleration restores the Universe to a nearly
vacuous state and as the brane separation decreases, the interbrane potential
becomes negative. As the branes approach one another, the scale factor of the
Universe, in the conventional Einstein description, changes from expansion to
contraction. When the branes collide and bounce, matter and radiation are
produced and there is a second reversal transforming contraction to expansion
so a new cycle can begin [387]. Figure E.10.2 shows a plot of several forms of
the potential that allow for a cyclic universe in this scenario [243]. A quali-

Figure E.13.: Plot of several allowed forms for V (ϕ) .

tative description of the model can be given in terms of this figure as follows.
Currently, the field is in region (a), at the point indicated with a dark circle,
where the potential is flat and drives cosmic acceleration. Eventually, the field
rolls towards negative values of V (region b), where cosmic expansion stops and
the universe (being nearly vacuous as a consequence of the acceleration phase)
enters a phase of slow contraction, where the spectrum of density perturba-
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tions is generated from quantum fluctuations in ϕ. In region (c) the kinetic
energy of ϕ dominates the energy density. At the bounce, part of this kinetic
energy is converted into matter and radiation, while the perturbations in ϕ are
imprinted as density fluctuations in the matter/radiation fluid. Meanwhile the
field quickly returns back to (a) where it comes to a stop, and the universe enters
the radiation-dominated era, so commencing the next cycle. As recognized by
its authors, the model presents two weak points (as is the case with many cyclic
models): the passage through the would-be singular point, and the propagation
of perturbations 82. It is difficult to achieve the bounce without passing from
the semi-classical regime to the high-energy fully quantum regime, where our
use of the effective 4-dimensional theory breaks down. The problem is that the
kinetic energy and the Hubble rate typically reach Planckian scale as the branes
approach. In fact, in the semi-classical regime where loop corrections can be
applied, brane collision may be prevented 83.

Recently, a ”new ekpyrotic cosmology” was presented in [87], where a NEC-
violating ghost condensate was merged with an ekpyrotic phase to generate a
non-singular bouncing cosmology. The authors claim to obtain a pre-bounce
scale-invariant spectrum using the mechanism of entropy perturbation gener-
ation [251]. This is accomplished by having two ekpyrotic scalar fields rolling
down their respective negative exponential potentials, and having its own higher-
derivative kinetic function. Notice however that the results of this model have
been challenged in [227].

Oscillatory universe from the Steady State model

The Steady State model [68] was proposed as alternative to the Big Bang model,
and has fallen into disfavor because the observations of the CMB. However,
its authors have advanced a new scenario, called the quasi-steady state model
(QSSC, see [214, 363, 303, 304]). In this model, the singularity is avoided by the
action of a scalar field C(x), which creates matter in compliance with the Weyl
postulate and the cosmological principle, and has negative energy and stresses.
The cyclic solutions in the QSSC can be expected from physical grounds as
follows [363]. To create a particle, C(x) must have energy-momentum equal
or larger than that of the particle. When C is above the threshold, it creates
particles and fuels the spacetime expansion (since it has negative stresses). To
this overall expansion an oscillation is superimposed. The creation of particles
and the expansion set C below the threshold, slowing down the number of
created particles, and the expansion. Here, the cosmological constant takes
control and causes contraction. The contraction rises the background level of
the C field, and the cycle starts again. As shown in [363], a solution to the

82This second problem will be discussed in Sec.E.11.
83Some other problems of the model were discussed by Linde [262].
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EOM of this theory in the FLRW setting that oscillates in this way is given by

a(t) = et/P (1 + η cos θ(t)) ,

with θ(t) ≈ 2πt/Q, where P is the long term ”steady state” time scale of
expansion, Q is the period of a single oscillation (with P >> Q), and η is a
parameter .

Other models

Due to the recently discovered dark energy component of the universe, several
forms for the dependence of the EOS parameter with the redshift have been
analyzed [201]. In fact, some data suggest that ω(z) evolved from a value larger
that −1 to a value smaller that −1 at some recent redshift. One of the models
that describes this crossing is the quintom model [160], where ω is parameterized
as 84

ω(ln a) = ω0 + ω1 cos[A ln(a/ac)], (E.270)

with ω0, ω1, A, and ac to be fitted by observations 85. It was shown in [161] that
for a certain choice of the parameters, a universe filled with quintom matter
(that is, matter with ω given by Eqn.(E.270) plus radiation and normal matter
expands and contracts cyclically, yielding an inflationary period at the beginning
of each cycle, and an acceleration period at the end 86.
Perhaps it is convenient at this point to remember that a closed universe

has not been discarded by observation yet (and in fact, cannot be discarded
with certainty due to the errors inherent to any experiment), though theoretical
prejudice and observation tend to favor Ω = 1. As we saw in Chapter E.5, a
nonzero bulk viscosity ζ modifies the fluid pressure according to

p = p0 − 3ζH,

where p0 is the equilibrium pressure. The asymmetry in the pressure depending
on the sign of H causes the increment in energy and entropy, leading to ever-
increasing cycles. It was shown in [231] that a similar asymmetry can be caused
by scalar fields in a pure non-dissipative setting. Starting from a FLRW setting
plus a scalar field under the influence of a potential which displays a minimum,
an asymmetry in the pressure, given by p ≈ −ρ for H > 0, and p ≈ ρ for
H < 0 is generated by the oscillations of the field around the minimum [231].
By imposing appropriate conditions to force a bounce (a→ a, ȧ→ −ȧ, φ→ φ,
φ̇ → φ̇), it was shown that there is an in increment in the maximum radius of
expansion of the universe in each cycle, due to conversion of work, done during
expansion, into expansion energy. The flatness problem is gradually ameliorated

84Constraints on this form of dark energy were studied in [266].
85Similar ideas were studied in [29, 309].
86Cosmological perturbations of the quintom model were studied in [422].
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in this model, since the universe becomes considerably long-lived and more flat
after each expansion.
To close this section, other models of a cyclic evolution for the universe are

listed next 87:

• String theory-inspired cyclic universes, starting from the property that
there exists a minimal length, ℓP l. See [198].

• A classical spinor field under the influence of a quartic potential in a FLRW
background was discussed in [22]. It was shown that V = λψ + mψψ̄ −
λ(ψ̄ψ)2 gives rise to oscillations in the scale factor, for certain choices of
the parameters 88.

• A cyclic scenario that takes into account matter and radiation evolution
if the proton has a finite lifetime was studied in [133].

E.10.3. Issues of the cyclic models

Cyclic universes are not free of problems. As was put forward in [338], during a
matter-dominated cycle, black holes with masses ranging from stellar to galactic
will form. During the contracting phase they will coalesce into a “monster black
hole” with mass equal to the mass of the universe. Its entropy can be estimated
by

S =
1

2
A = 2πR2 = 8πM2 & 10124,

where the mass within one Hubble volume (≈ 1023M⊙) was used. However,
the entropy of the radiation in the present Hubble volume is ≈ 1087, in such a
way that black hole formation in a previous cycle would lead to a huge excess
of entropy generation. In this scenario, the excess must have somehow been
eliminated by the bounce. But there are some ways out of this problem. Sikkema
and Israel [376] have suggested that the inner horizon of the monster Kerr black
hole absorbs strongly blue-shifted gravitational radiation emitted during the
last moments of the collapse. This radiation increases the mass of the core
of the black hole by a huge amount, rapidly reaching Planckian values, and
correspondingly greatly reduces its specific entropy. If quantum effects produce a
bounce, this process would allow the expansion to begin from a state of relatively
low disorder Durrer and Laukenmann [138] have noted that the entropy in the
radiation we observe today is actually due to the previous matter cycle, which
may have had shorter duration than the current cycle, leading to less clumping
and consequently less entropy production 89.
Another issue of cyclic models was raised in [25], where the evolution of a

cosmic string network was considered in a bouncing universe. It was shown that

87See also [310].
88See also [423].
89Gravitational perturbations were also studied in [138].
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the string network displays an asymmetric behaviour between the contraction
and expansion epochs. In particular, while during expansion a cosmic string
network will quickly evolve towards a linear scaling regime, in a phase of collapse
it would asymptotically behave like a radiation fluid. A cosmic string network
will add a significant contribution, in the form of radiation, to the energy (and
hence also entropy) budget of a contracting universe, which will become ever
more important as the contraction proceeds. Hence it establishes the need for
a suitable entropy dilution mechanism. This process will also operate, mutatis
mutandis, for other stable topological defects. Conversely, if direct evidence is
found for the presence of topological defects (with a given energy scale) in the
early universe, their existence alone will impose constraints on the existence and
characteristics of any previous phases

E.11. Perturbations in bouncing universes

As discussed in the Introduction, inflation can solve many of the shortcomings
of the SCM, but it also has problems of its own. Bouncing models may pro-
vide an alternative (or perhaps a complement) to standard inflation, since in
principle the problems of the SCM come from a “shortage of time” for things
to happen early after the big bang [179]. The arguments in Sect.E.1 show that
an accelerated contraction has the necessary features to solve the problems of
the SCM [173]. Let us recall that if in the contracting phase the Hubble radius
decreases faster than the physical wavelength corresponding to fixed comoving
scales, quantum fluctuations on microscopic scales can be stretched to scales
which are cosmological at the present time, exactly as it happens in inflationary
models (see for instance [179]). Figure E.14 shows a sketch of the structure of
a space-time in which standard inflation starts at ti and ends at tR. During in-
flation, the Hubble radius H−1(t) is constant, and it grows linearly afterwards,
while the physical length corresponding to a fixed co-moving scale increases ex-
ponentially during the period of inflation, and then grows less fast than H−1(t).
The figure shows that for a given k, the fluctuation can be (causally) produced
well inside the Hubble radius, ”leave ” H−1(t), and ”re-enter” in an appropriate
way to describe the structures we observe today.
Figure E.15 shows a universe that undergoes a contracting phase, a bounce,

and then enters an expanding epoch, assumed to be that of the SCM. In this
case, the Hubble radius decreases relative to a fixed comoving scale during the
contracting phase, and increases faster in the expanding phase. Fluctuations of
cosmological interest today are generated sub- Hubble but propagate outside the
Hubble radius for a long time interval. There is however, one main difference
with respect to the standard inflationary scenario. In the latter the curvature
scale R ∝ H2 is (almost) constant, while in the former, it grows until it reaches a
maximum and then decreases 90. This difference may lead to observational con-

90This assertion is valid in models in which quantum effects intervene in such a way that
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Figure E.14.: Behavior of the comoving scale k and of the Hubble radius H−1

as a function of time in inflation. Taken from [79].

sequences 91, particularly regarding the generation of a primordial spectrum of
inhomogeneities through parametric amplification of the quantum fluctuations
of the background fields in their vacuum state [293]. These, when decomposed
in Fourier modes, satisfy a canonical Schrodinger-like equation, whose effective
potential is determined by the so-called “pump field”, which depends in its turn
on the background geometry. There are then two properties of the background
in a bouncing universe that can affect the final form of the perturbation spectra
[177]: (1) the growth of the curvature scale, and (2) the fields which, together
with the gravitational field, determine the background. Property (1) has two im-
portant consequences. The first, is that bouncing scenarios may lead to ”blue”
(i.e. growing with frequency) metric perturbation spectra, instead of being flat,
or decreasing (”red”), as in standard inflation. A growing spectrum leads to the
formation of relic backgrounds whose amplitude is higher at higher frequency,
hence more easily detectable. A typical example is that of gravitational waves
in SPPB [177] (see Eqn.(E.279)). The second is that the growth of the curva-
ture may also force the comoving amplitude of perturbations to grow (instead
of being frozen) outside the horizon (see [84] for this effect in the SPBB) 92.

Regarding Property 2, one of the interesting consequences is the amplifica-

Rmax ∝ λ−2
min, which is the case of loop quantum gravity for instance, where λmin ∝ ℓPl.

For the models in which H reaches a null value, H2 can be replaced by ℓc =
√
a3/a′′, see

Eqn.(E.355).
91See [177] for a qualitative discussion of these consequences in the case of string pre-big-bang

cosmology.
92Consequently, special attention must be taken in the application of linear perturbation

theory, see [84].
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Figure E.15.: Behavior of the comoving scale k and of the Hubble radius H−1

as a function of time in a bouncing universe. Taken from [79].

tion of the fluctuations of the EM field, due for instance to the non-minimal
coupling with a scalar field (such as the dilaton, or the scalar field in WIST,
see Sect.E.11.4). A relic background of scalar particles is also generated, which
may be related to dark matter [174].
There is yet another salient feature of the perturbations in a bouncing uni-

verse. Since in the far past of this type of models the universe is assumed to
be almost flat, one can impose vacuum initial conditions for the perturbations
based on simple quantum field theory in flat space [345], instead of having to
set initial conditions in a high-curvature regime.
It must be remarked that solving for the perturbations in bouncing models

is in principle a nontrivial task, since there are potential ambiguities that may
arise at the bounce, not present in standard inflation 93. Two views can be
taken to tackle the study of perturbations in such a scenario. The first one is
to devise first a detailed model of the bounce, and then study the properties of
the post-bounce perturbations. The problem in this case is that total control of
the high-energy physics involved in the bounce is needed, which is not always
achieved. It may also happen that the bouncing solution under scrutiny is quite
artificial from the physical point of view, as for instance if it is not embedded in
any fundamental theory. But in any case some lessons may be extracted from
the examples, as we shall see in Sect.E.11.1.
A second attitude is to make some simplifying assumptions and try to work

out predictions that are independent of the UV physics that most surely governs

93For instance, at the bounce the comoving Hubble scale diverges. Hence all scales are inside
the Hubble scale, at least for an instant. However, there are some issues common to both
scenarios, such as the transplanckian problem (see for instance [78]).

2123



the bounce. This possibility has led to a great debate [272]. In particular, in
order to avoid the specification of the details near the high-curvature regime,
matching conditions are used, leading to ambiguities. The dependence of the
post-bounce spectrum on the matching conditions has been addressed by many
authors, as will be discussed in Sect.E.11.3.

At this point, it is perhaps necessary to say that there are at least two al-
ternative procedures to deal with gravitational perturbations in a relativistic
setting. Since Lifshitz’s original paper [259], it has been a common practice
to start the examination of the theory of perturbations of General Relativity
by considering variations of non-observable quantities, such as δgµν . The main
drawback of this procedure is that it mixes true perturbations and arbitrary
(infinitesimal) coordinate transformations, which are unphysical. As shown in
[28], [223], [74], [293], this problem can be solved by adopting gauge-independent
combinations of the perturbed quantities expressed in terms of the metric tensor
and its derivatives. The dynamics of these gauge-independent variables is then
provided by the EE.

A second method exists, based on the quasi-Maxwellian (QM) formulation
of Einstein’s equations. The advantage of this method is that it is gauge-
independent from the start, thus dealing only with observable quantities [204],
[330], [319, 320, 321] [216]. We shall briefly review both methods in Sect.E.11.5,
including a summary of the relation between them.

In the next sections we shall discuss examples of the two approaches. From
an observational point of view, the crucial question is whether bouncing models
can furnish a nearly-scale invariant spectrum of adiabatic scalar perturbations
after the bounce, as demanded by the measurements of the WMAP [381], Sloan
survey [392], and 2df [339]. It is also of interest to see if bouncing solutions lead
to observable consequences that are markedly different from those of inflation
(see Sect. E.12).

E.11.1. Regular models

In the previous chapters, we have seen that it is possible to generate bouncing
models in a wide choice of scenarios, essentially by any of the mechanisms pre-
sented in Sect.E.1.1. Obviously, the outcome is very dependent on the choice,
but specific models can be sometimes useful in the hope of extracting tendencies
of a more general behaviour. In this sense, scalar, vector, and tensor perturba-
tions have been studied in many exact backgrounds displaying a bounce. An
incomplete list includes the following:

• General relativity with radiation and a free scalar field having negative
energy [341],

• Two scalar fields [200, 9, 134].
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• A 5d Randall-Sundrum model with radiation, in which the extra dimension
is timelike [40].

• Two perfect fluids [163].

• A nonlinear EM Lagrangian [327].

• A scalar field with higher-order corrections from string theory, with an
exponential potential (this case covers the SPBB and the first version of
the Ekpyrotic universe) [401].

• A non-canonical scalar field, with Lagrangian L = p(X, φ), where X =
1/2gµν∂µφ∂νφ [4, 408].

• Bounce due to quantum cosmological effects using Bohmian solutions of
the canonical Wheeler-de Witt equation [344].

• Non-local dilaton potential stemming from string theory [178].

We shall present next a short discussion of scalar, tensor, and vector pertur-
bations in some of these scenarios.

Scalar perturbations

The evolution of scalar perturbations through a bounce has been a subject
of intense debate (see references in [72]). A consensus for the case of a two-
component bouncing model in GR seems to have been reached after [72]. This
model is described by a flat FLRW metric, and one of the components has
negative energy density (to produce the bounce) and is important only near the
bounce. The components interact only gravitationally, and the component that
dominates away from the bounce has an intrinsic isocurvature mode, in order
to describe scalar fields or perfect fluids. The result obtained in [72] is that the
spectrum of the growing mode of the Bardeen potential in the pre-bounce is
transferred to a decaying mode in the post-bounce 94, 95.
Since the phenomenology associated to the decaying mode in the pre-bounce

phase is known to differ from observation [12], we may ask what can be done
to lift the negative result of [72]. One possibility is to allow the fluids to inter-
act. Another one is to incorporate in the background solution the decay of the
normal component to radiation 96. Yet another possibility is to consider higher-
order corrections. This has been done in several string-inspired models 97, in the
gravi-dilaton regime by exploring regular backgrounds (such as those presented

94These result is supported by the references cited in [72] and also by the results in [163].
95Notice that mode-mixing is possible with ǫ = 1, as for instance in [217].
96See Sect.E.3.2 and [365] for an exact solution that has this feature.
97The string pre-big-bang model without corrections furnishes a highly blue-tilted spectrum

ns = 4 of scalar perturbations [84].
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in Sect.E.3.3), as in [98],[400],[401], [100]. The results presented in these arti-
cles show that although it may be possible to generate a nearly scale-invariant
spectrum in the pre-bounce phase, it corresponds to the decaying mode in the
expanding phase 98. An exception is the model presented in Sect.E.11.1. An-
other exception may be the ekpyrotic model, where there are results indicating
that a scale-invariant spectrum may be obtained in the post-bounce phase [395]
99.
Another set of models comes from the quantum evolution of the universe.

As discussed in Sect.E.9.1, bouncing solutions are possible (without the need
of a ”phantom” field) in the context of the WdW equation, when the Bohm-de
Broglie interpretation is used in the mini-superspace approach. A feature of this
scenario is that a full quantum treatment of both background and perturbations
is possible [342, 343]. The model analyzed in [344] is GR plus a perfect fluid,
in which the scalar perturbations can be described in terms of a single degree
of freedom, related to the Bardeen potential Φ (see Appendix). The Bohmian
quantum trajectory for the scale factor is given by

a(T ) = a0

[
a+

(
T

T0

)2
] 1

3(1−ω)

, (E.271)

with p = ωρ. The normal modes of the scalar perturbation satisfy the equation

v′′k +

(
k2 − a′′

a

)
vk = 0, (E.272)

where a prime means derivative wrt conformal time. Following the usual pro-
cedure of expanding the modes for large (negative and positive) values of T ,
matching the expansions, and then transforming to the Bardeen potential, the
power spectrum defined by

PΦ =
2k3

π2
|Φ2| ∝ kns−1, (E.273)

yields for the post-bounce phase [344]

ns = 1 +
12ω

1 + 3ω
. (E.274)

An analogous calculation for the tensor modes gives

nT =
12ω

1 + 3ω
. (E.275)

98The SPBB model may yield the right spectrum when axion fluctuations are considered
[154].

99See ref.[8] for another model in which the growing mode in the contracting phase goes over
into the dominant mode in the post-bounce phase.
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Notice that a scale-invariant spectrum follows both for the scalar and the tensor
perturbations for the case of dust (ω = 0), which is the fluid supposed to domi-
nate the evolution at the time of the matching of the solutions (not necessarily
the same governing at the time of the bounce) [344]. An important lesson that
follows from this example and the one presented in [163] (see Sect.E.11.1) is
that the spectral index is quite insensitive to the details of the bounce, being
determined mostly by the dominant component. The example also shows that
the bounce is important in the mixing of the modes, which is relevant for the
amplitude of the modes in the post-bounce phase.

Vector perturbations in a contracting background

It is a well-known result of perturbation theory that vector perturbations (VPs)
only exhibit decreasing solutions in the context of an expanding Universe (see for
instance [293]) 100. However, as shown in [39], VPs can increase in a contracting
flat background, with a perfect fluid as source. Hence, they might provide a
signature of a bounce. As shown in the Appendix, the relevant equations are
Sik = C i

k/a
2, where C is a constant, and

V i
k ∝

k2C i
k

a1−3ω
. (E.276)

Note that V i
k increases for ω = 0, and stays constant for radiation, but Sik

always increases for decreasing a. As argued in [39], VPs cannot be neglected in
the SPBB scenario, in such a way that near a bounce, the metric perturbations
may become too large for the use of linear theory (depending on the value of
the C i

k)
101. Related results were presented in [186], where it was also shown

that the growing vector mode matches with a decaying mode after the curvature
bounce, in the context of a low-energy flat gravi-dilaton model 102.
Since many bouncing models are generated by a scalar field, a relevant ques-

tion is whether VP are important in this type of scenarios. One important point
is that VPs are not supported by a scalar field at first order. At second order,
the scalar, vector, and tensor modes couple, and VPs can be generated by scalar-
scalar mode couplings [287]. Considering exponential potentials and power-law
solutions, the ratio of the amplitudes of second order vector perturbations in
contracting and expanding phases was studied in [287]. The relative magni-
tudes of the second order vector perturbations in the two phases depend on the
scaling solutions chosen, but at least in one of the examples studied (dust-like
collapse, [162]), the observable differences between the collapsing models and
the inflationary scenario could be large, assuming that the transition between
the two phases does not significantly alter the ratio.

100Another interesting result is that the simplest models of inflation do not produce VPs, see
for instance [265].

101Quantum corrections to the evolution of vector modes were studied in the context of loop
quantum gravity in [67]

102This is not nececssarily so in multidimensional cosmological models, also analyzed in [186].
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Tensor perturbations

The spectrum of gravitational waves can be a very powerful tool to discriminate
between different models of the universe, since gravitational waves decouple
very early from matter and travel undisturbed, as opposed to EM waves. In
particular, in the context of the SPBB scenario, the amplification of tensor
perturbations is greatly enhanced wrt the standard inflationary scenario for
large comoving wavenumber k [171]. This result was confirmed in [84], with a
gravi-dilaton background solution of the EOM

G ν
µ =

1

2

(
∂µϕ∂

νϕ− 1

2
δ νµ ∂αϕ

)
, (E.277)

�ϕ = 0, (E.278)

given by

a(η) = (−η)1/2, ϕ(η) =
−3−

√
3

1 +
√
3

ln(−η) + const.,

the typical amplitude for the normalized vacuum tensor fluctuations outside of
the horizon over a scale k−1 is given by [84]

|δhk(η)| ≈
(
H1

MP l

)
(kη1)

3/2 ln |kη|, (E.279)

where H1 ≈ (a1η1)
−1 is the final contraction scale 103, while the result in the

standard inflationary expansion does not have the ln dependence (see for in-
stance [192]). The possible influence of the nonperturbative phase, where the
curvature and the dilaton are very large, was studied by imposing a bouncing
solution in [169], and by taking into account higher-derivative α′ and quantum
corrections (see Sect.E.3.3) [176], [97]. The results in these papers show that
the low frequency modes, crossing the horizon in the low-curvature regime, are
unaffected by higher-order corrections, and also that the shape of the spectrum
of the relic graviton background, obtained in the context of the pre-Big Bang
scenario, is strongly model-dependent.
This analysis was continued in [428], where cosmological perturbations in the

low-energy string effective action with a dilaton coupling F (φ) were studied,
with the addition of a Gauss-Bonnet term, a kinetic term of the type (∇φ)4,
and a potential V (φ). Scale-invariant spectra in the string frame and a sup-
pressed tensor-to-scalar ratio were obtained by imposing slow-roll inflation in
the Einstein frame. The results show that it is practically impossible to obtain
these conditions without the second-order corrections given by Eq.(E.154), both
with and without the Gauss-Bonnet term.

103Scalar perturbations of this model were also investigated in [84], and present amplitudes
and spectra similar to the tensor perturbations.
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Analytic and numerical results for the tensor post-bounce spectrum have been
obtained for a two-component model defined by p± = ω±ρ± [163]. The flat
background is given by

a(τ) = a0

(
1 +

τ 2

τ 20

)α
,

with

dτ =
dt

aβ
, β =

3

2
(2ω+ − ω− + 1),

α =
1

3(ω−ω+)
, a0 =

(
γ−
γ+

)α
, τ 20 =

4α2

ℓ2Pl

γ−
γ2+
,

γ+ and γ− are constants, with γ− < 0, to produce the bounce. The tensor
spectrum, assuming that −1/3 < ω+ < 1, and that the potential that arises
from Eqn.(E.355) has only one extremum at τ = 0, is given by [163] Ph ∝ k̃nT ,
where

nT =
12ω+

1 + 3ω+

.

Note that the spectral index does not depend on the EOS parameter of the
“exotic” fluid (contrary to the case of the spectral index for the scalar perturba-
tions). This was to be expected since large wavelengths are comparable to the
curvature scale of the background at a time when the universe is still far from
the bounce, so the behaviour obtained in this case can be taken as generic, i.e.
independent of the details of the bounce.
Yet another example of the calculation of a tensor spectrum in a bouncing

model was presented in Sect.E.11.1, based on the quantum evolution (using the
Bohmian quantum trajectory) of a universe described by GR plus a perfect fluid.
The result is (see the comments after Eqn.(E.275))

nT =
12ω

1 + 3ω
. (E.280)

In fact, the tensor-to-scalar ratio in this model was estimated as T/S ≅ 5.2 ×
10−3, and the characteristic bounce length-scale L0 ≅ 1500ℓP l, (assuming that
ns . 1.01) which is a value in the range in which quantum effects are expected
to be relevant, while at the same time the Wheeler-de Witt equation is valid
(without corrections from stringy/loop effects).

E.11.2. Scalar perturbations in exact models using the
quasi-Maxwellian framework

As mentioned in the introduction of this chapter, perturbations can also be
studied using the quasi-Maxwellian (quasi-Maxwellian) method. In this section
we apply it to two exact bouncing solutions. The first one is generated by the
non-minimal coupling of the electromagnetic field with gravity (see Sect.(E.4.4)).
As discussed in the Appendix, in the quasi-Maxwellian formalism the scalar
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perturbations are completely described by the variables E and Σ, which obey
the equations (E.376)-(E.378):

Ė = − 1 + λ

2
ρΣ− 1

3
θ E,

Σ̇ =

[
6λ

1 + λ

(
ǫ+

k2

3

)
1

a2 ρ
− 1

]
E,

with p = λρ, and k is the wave number (the subindex k in E and Σ has been
omited). Combining these, we obtain the equation for the time evolution of the
electric part of the perturbed Weyl tensor:

Ë + Ė

(
4

3
+ λ

)
θ + EX = 0, (E.281)

where X is a function of the background variables given by

X ≡ λ
3ǫ+ k2

a2
−
(
λ +

2

3

)
ρ+

2 + 3λ

9
θ2.

Defining a new function g(t) by g = E a−σ, where σ ≡ −(4 + 3λ)/2, we obtain
from Eqn.(E.281)

g̈ + χ(t) g = 0, (E.282)

where 104

χ(t) ≡ σ
ä

a
− σ(σ + 1)

(
ȧ

a

)2

+X. (E.283)

In the case of the bouncing universe given by Eqn.(E.181), we have

(
t2 + α2

0

)2
g̈ +

(
α t2 + β α2

0

)
g = 0, (E.284)

where α ≡ k2/3 − 7/4 and β ≡ k2/3 − 1/2. With the change of variable
z = 1/2− it/(2α0), this equation takes the form

d2g

dz2
+ I(z) g = 0, (E.285)

where

I(z) = − β

4z2 (z − 1)2
+
α (2z − 1)2

4z2 (z − 1)2
. (E.286)

After a direct calculation, Eqn.(E.285) can be transformed into a hypergeometric
equation

z(1− z) d
2ω

dz2
+ [c− (a + b+ 1)z]

dω

dz
− abω = 0, (E.287)

104Notice that, as shown in the Appendix, this equation is actually a consequence of a trans-
formation that takes the variables (E,Σ) (which are not canonically conjugated) into a
new pair of variables that are canonically conjugated.
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where

a =
1

2
+

√
1

4
− α, (E.288)

b =
1

2
−
√

1

4
− α, (E.289)

c =
5

2
. (E.290)

The solution for g(z) is given by

g(z) = z
c

2 (z − 1)
c−a−b−1

2 ω(z) (E.291)

ot, in terms of the hypergeometric function F (a, b, c; z),

g(z) = z
5
4 (z − 1)−

1
4 F

(
1

2
+

√
1

4
− α, 1

2
−
√

1

4
− α, 5

2
; z

)
. (E.292)

Finally, the solution for the electric part of the Weyl tensor, is given by

Ek = s(−4α2
0)

− 5
4 (z − 1)−

3
2 F

(
1

2
+

√
2− k2

3
,
1

2
−
√

2− k2

3
,
5

2
; z

)
(E.293)

where s is a constant. Restricting to z ∈ ℜ, it follows that this solution is
regular for z < 1, and can be analytically extended for all values of z. Hence,
the perturbation is regular.
Notice that the power spectrum of the perturbations can be obtained using

(see Appendix)
Pk = k−1|Ek|2. (E.294)

The second example we shall study in this section is the model presented
in Sect.E.4.5, the perturbation of which was analyzed by the quasi-Maxwellian
method in [327]. In this model, the singularity is avoided by the introduction
of nonlinear corrections to Maxwell electrodynamics, given by

L = −1
4
F + αF 2 + β G2, (E.295)

where F = FµνF
µν , G

.
= 1

2
ηαβµνF

αβF µν , α and β are arbitrary constants. After
an average procedure (see Sect.E.4.5), the expression for the scale factor for the
”magnetic unverse” with ǫ = 0 is:

a(t)2 = H0

[
2

3
(t2 + 12α)

]1/2
. (E.296)

The interpretation of the source as a one-component perfect fluid in an adiabatic
regime leads to instabilities [340], which are artificial, as will be seen next. The
sound velocity of the fluid in this case is given by [249]

∂p

∂ρ
=
ṗ

ρ̇
= − ṗ

θ(ρ+ p)
. (E.297)
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This expression, involving only background quantities, is not defined at the
points where the energy density attains an extremum given by θ = 0 and
ρ + p = 0. In terms of the cosmological time, these points are determined
by t = 0 and t = ±tc = 12α. Notice that they are well-behaved regular
points of the geometry, indicating that the occurrence of a singularity is in fact
caused by an inappropriate description of the source. This difficulty can be
circumvented by splitting the part coming from Maxwell’s dynamics from the
additional non-linear α−dependent term in the Lagrangian. As a result, we get
two noninteracting perfect fluids:

Tµν = T (1)
µν + T (2)

µν , (E.298)

where

T (1)
µν = (ρ1 + p1) vµvν − p1 gµν , (E.299)

T (2)
µν = (ρ2 + p2) vµvν − p2 gµν , (E.300)

and

ρ1 =
1

2
H

2, (E.301)

p1 =
1

6
H

2, (E.302)

ρ2 = −4αH
4, (E.303)

p2 = − 20

3
αH

4. (E.304)

From this decomposition it follows that each of the components of the fluid sat-
isfies the conservation equation, thus showing that the source can be described
by two non-interacting perfect fluids with equations of state p1 = 1/3 ρ1 and
p2 = 5/3 ρ2. This splitting should be understood only as a mathematical device
to allow for a fluid description.

From the considerations presented in Sect.E.11.5 we obtain [327]:

Σ̇1 = −
(
2λ1(3ǫ+ k2)

a2(1 + λ1)ρ1
+ 1

)
E1, (E.305)

Σ̇2 = −
(
2λ1(3ǫ+ k2)

a2(1 + λ2)ρ2
+ 1

)
E2, (E.306)

Ė1 +
1

3
θE1 = −

1

2
(1 + λ1) ρ1Σ1, (E.307)

Ė2 +
1

3
θE2 = −

1

2
(1 + λ2) ρ2Σ2, (E.308)
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where k is the wave number. As shown in [319], the scalar perturbations can be
expressed in terms of the two basic variables Ei and Σi, and the corresponding
equations can be decoupled. The result in terms of the Ei is

Ëi +
4 + 3λi

3
θĖi +

{
2 + 3λi

9
θ2
(
2

3
+ λi

)
ρi
1

6
(1 + 3λj)ρj −

(3ǫ+ k2)λi
a2

}
Ei = 0.

(E.309)
Note that in this expression there is no summation in the indices, and j 6= i ,
and λi =

(
1
3
, 5
3

)
. In the first case the equation for the variable E1 becomes

Ë1 +
5

3
θĖ1 +

[
1

3
θ2 − ρ1 − ρ2 −

5

3a2

]
E1 = 0. (E.310)

Let us analyze the behavior of the perturbations in the neighborhood of the
points where the energy density attains an extremum (i.e. the bounce and the
point in which ρ + p vanishes). The expansion of the equation of E1 in the
neighborhood of the bounce (at t = 0) up to second order, is given by:

Ë1 + atĖ1 + (b+ b1t
2)E1 = 0, (E.311)

where the constants a and b are defined as follows

a =
5

2t2c
, (E.312)

b = − k2√
6H0tc

, (E.313)

b1 = −
b

2t2c
− 3

4t4c
. (E.314)

Defining a new function f as

f(t) = E1(t) exp

{(
+
a

4
− i

2

√
b1 −

a2

4

)
t2

}
, (E.315)

and introducing the coordinate ξ by

ξ = −it2
√
b1 −

a2

4
, (E.316)

we obtain for f the confluent hypergeometric equation [5]

ξf̈ + (1/2− ξ)ḟ + ef = 0, (E.317)

where

e =
i(b− a/2)

4(b1 − a2/4)1/2
− 1

2
. (E.318)
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The solution of this equation is given by

f(t) = A M

(
d, 1/2,−it2

√
b1 −

a2

4

)
, (E.319)

where A is an arbitrary constant andM(d, 1/2, ξ) is the confluent hypergeomet-
ric function, which is well-behaved in the neighborhood of the bounce. Hence
the perturbation E1(t) is regular and given by

E1(t) = A M

(
d, 1/2,−it2

√
b1 −

a2

4

)

× exp

{(
−a
4
+
i

2

√
b1 −

a2

4

)
t2

}
. (E.320)

After a similar procedure, the perturbation E2 obeys, in the same neighborhood,
the following equation:

Ë2 + atĖ2 + (b+ b1t
2)E2 = 0. (E.321)

This is the same equation we obtained for E1, with different values of a, b and
b1 given in this case by

a =
9

2t2c
, (E.322)

b =
3

2t2c
− 5

k2√
6H0tc

, (E.323)

b1 = −
5k2

t3cH0

√
6
− 5

t4c
. (E.324)

The solution is given by the real part of

E2(t) = AM

(
d, 1/2,−it2

√
b1 −

a2

4

)

× exp

{
−
(
a

4
− i

2

√
b1 −

a2

4

)
t2

}
, (E.325)

so the perturbation E2(t) is well-behaved. At the neighborhood of the other
critical point, given by t = tc, the equation for the perturbation E1 is given by

Ë1 + aĖ1 + (b+ b1t)E1 = 0, (E.326)

with

a =
5

4tc
, (E.327)
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b = − 3

4t2c
−
√
3k2

6H0tc
, (E.328)

b1 =

√
3

4t2c

(
k2

3H0

− 3

2tc

)
, (E.329)

By the following variable transformation:

E1(t) = exp

(
−at

2
w(t)

)
, (E.330)

the differential equation goes to

ẅ +
(
b− (a/2)2 + b1t

)
w = 0, (E.331)

and the solution is

w(t) = w0Ai

(
−b− (a/2)2 + b1t

b2/3

)
. (E.332)

The Airy function Ai is regular near t = tc, and so is E1. Finally we look for
the equation of E2 at the neighborhood of t = tc:

Ë2 + aĖ2 + (b+ b1t)E2 = 0, (E.333)

where

a =
9

4tc
, (E.334)

b =
5

tc

(
5

4tc
−
√
3m2

6H0

)
, (E.335)

b1 =
5
√
3

2t2c

(
1

tc
− m2

6H0

)
. (E.336)

This equation differs from Eq.(E.326) only by the numerical values of the pa-
rameters a, b, and b1 so we obtain the same type of regular solution

E2 = w0Ai

(
−b− (a/2)2 + b1t

b
2/3
1

)
exp

(
−at

2

)
(E.337)

Hence, it was shown by a direct analysis of a specific nonsingular universe, that
in the neighborhood of the special points in which a change of regime occurs,
all independent perturbed quantities are well-behaved, and the model is stable
with regard to scalar perturbations.
A similar analysis has been carried out for the model described by Eqn.(E.296)

in the case of tensor perturbations in [19]. The result shows differences between
gravitational waves generated near a singularity and those generated near the
bounce. While in the first case the system exhibits a node-focus transition
in the (E,Σ) plane, independently of the perturbation wavelength λ, in the
bouncing model the trajectories may exhibit a focus-node-focus transition, or
no transition at all, depending on the value of λ.
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E.11.3. Matching

As mentioned in Sect.E.11, another approach to the description of perturbations
in a bouncing universe uses the idea of matching a contracting with an expanding
phase. The hope here again resides in the fact that some general features can be
extracted from given examples, since the matching may be done in such a way
as to avoid a very detailed specification of the high curvature phase. Inasmuch
as the result depends on the matching conditions, this issue was the subject of
a long debate [272]. We shall present next some examples of this technique.
The case of a scalar field with an exponential potential (inspired in the string

pre-big bang and the ekpyrotic model) was studied in [139]. A matching be-
tween a contracting, scalar field-dominated phase and an expanding, radiation-
dominated phase (and also of the corresponding perturbations) was done using
the Israel conditions [218]. It was assumed that the slice of spacetime in which
high-energy physics takes control is very thin, and can be approximated by a
spacelike surface, with a negative surface tension (to be specified by the un-
derlying physics) required by the jump in the extrinsic curvature. Neglecting
possible, but subdominant, anisotropic surface stresses 105, and depending on
the chosen surface, it was found that a scale-invariant spectrum could be trans-
ferred from the contracting to the expanding phase. A similar model has been
studied in [162], where it was shown that the value p = 2/3 of the power law
a(t) ∝ (−t)p was adopted for the scale factor generates a scale-invariant spec-
trum of adiabatic curvature fluctuations in the collapsing phase. The chosen
background corresponds to a contracting Universe dominated by cold matter
with null pressure. As a result of the glueing, the spectrum is matched at the
bounce to a scale-invariant spectrum during the expanding phase. This model
was also shown to generate a scale-invariant spectrum of gravitational waves, as
already realized in [271].
It is useful to assume that the physics of the bounce is encoded in the transfer

matrix T , defined by

(
D+

S+

)
=

(
T11 T12
T21 T22

)(
D−
S−

)
. (E.338)

T gives the degree of mixing between the dominant (D) and sub-dominant (S)
modes before and after the bounce for a fixed comoving wave number k. Several
combinations are possible, such as one for which the spectrum is initially not
scale invariant but is turned into it because of a nontrivial k dependence of
the transition matrix. Due to the fact that the bounce lasts only a short time,
it is conceivable that it does not exert any influence on the large scales that
are of astrophysical interest today. This implies that T does not depend on k
[139], in such a way that a scale invariant pre-bounce spectrum is transmitted
without change to the post-bounce phase. This hypothesis has been tested

105This restriction was lifted in [113].
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in [280]. It was shown by way of an example (a bouncing solution in general
relativity, with positive curvature spatial section, with a scalar field as a source,
by using an expansion of the bouncing scale factor around the ǫ = 1 de Sitter-
like bouncing solution) that T may depend on k, provided that the null energy
condition (NEC) is very close to being violated at the bounce, hence affecting
the large scale behaviour of the scalar perturbations (see however [129, 282]).
Note however that it was shown in [280] that the spectrum of gravitational
waves is not affected by the bounce.
The authors of [105] have obtained the most general form of the transfer

matrix respecting local causality. In particular, they have shown that no local-
causality-respecting matching condition can lead to a scale invariant spectrum
for both the pre-big-bang and the ekpyrotic model, in agreement with the result
of [118]. They also studied a non-local model based on string theory and showed
that under certain conditions a post-bounce SIS is possible.
A different line of attack was pursued in [73] with the central assumption that

the bounce in a spatially flat universe is governed by just one physical scale (cho-
sen as ηB, the cosmological time at which the bounce occurs). Working in GR
and incorporating all the eventual new physics in the matter side of EE, the
general solution to the problem of the propagation of perturbations through the
bounce was presented in [73]. It was shown that the spectrum of the Bardeen
potential in the expansion phase depends critically on the relation between the
comoving pressure perturbation and the Bardeen potential in the new physics
sector of the energy-momentum tensor. Only if the comoving pressure perturba-
tion is directly proportional to the Bardeen potential (rather than its Laplacian,
as for any known form of ordinary matter), the pre-bounce growing mode of the
Bardeen potential persists in the post-bounce constant mode. This would open
the door to models with a scale-invariant spectrum (hence in agreement with
observations) for those cases in which there is very slow contraction in the pre-
bounce. This result is supported by numerical analysis of a toy model in which
δp ∝ Ψ [73]. Examples of this type of behaviour for the perturbations are given
by models with spatial curvature (which cannot be treated however with this
approach) and also by models with modifications coming from extra dimensions
(such as the one presented in [41]) [73].

E.11.4. Creation of cosmological magnetic fields

The origin, evolution, and structure of large-scale magnetic fields are amongst
the most important issues in astrophysics and cosmology. The standard model
for the generation of this fields is the dynamo, which amplifies a small seed field
to the current observed values of 1− few µG. There are several mechanisms to
produce these seeds, but the prevalent view is that they have a primordial origin
[190]. In particular, the vacuum fluctuations of the EM field may be “stretched”
by the evolution of the background geometry to super-horizon scales, and they
could appear today as large-scale EM fields. For this to happen, conformal
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invariance of the EM equations must be broken. This is the case in models such
as dilaton electrodynamics [255] and Weyl integrable spacetime (see Sect.E.3.2,
and [366] for a list of references on the subject).

As a previous step in the details of the case of the EM field, let us discuss the
creation of massive scalar particles in a bouncing universe with ǫ = −1, following
[115]. The expansion factor is given by a(t) = t2 + a20, or a(η) = a20 cosh η in
conformal time, as in the examples studied in [286, 311]. The EOM for the
scalar field is

�φ +

(
m2 +

1

6
ξR

)
φ = 0.

With the mode decomposition

φk(x) = a(η)−1/2Yk(~x)χk(η),

where k = (k, J,M) and the Yk(~x) are given in terms of the spherical harmonics
(see [56]), the function χk(η) satisfies the modified Mathieu equation:

d2χk
dη2

− (λ− 2h2 cosh2 η)χk = 0,

where λ ≡ −(k2+ 1
2
m2a20), and h ≡ 1

2
ma0. The number of created quanta in the

(asymptotically flat) future can be calculated with the solutions of this equation
that have the right asymptotic behaviour, and following standard techniques.
In the limit h << 1 (i.e. when the Compton wavelength of the particle is much
greater than a0), the result is [115]

|βk|2 =
1

2 sinh2 πk̃
[1− cos

(
4k̃ ln

h

2

)
+ ϕ],

where k̃ is the index in the Mathieu functions M−ik̃(η, h), and is a complicated
function of λ and h, which in the limit for small h reduces to

λ = −k̃2 − h4

2(k̃ + 1)
+ O(h8),

and ϕ is a phase, independent of h. The expression for |β| varies from 0 to
4× exp(−2πk̃) for large k, and shows that for a given k, the particle number
depends on the product ma0.

The creation of magnetic fields in a bouncing universe in models that break
the conformal invariance with a coupling to a scalar field was studied in [365,
185, 366]. In the latter, canonical quantization was applied to the model given
by

S =
1

2

∫
d4x
√−g f(ω)Fαβ F αβ,
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where ω is the scalar field, and Fαβ an abelian field, with f(ω) = exp(−2ω).
The modes of the potential Aµ = e−ωAµ satisfy the equation

A′′(σ)
kα (η) + (k2 − V (η))A(σ)

kα , (E.339)

where σ = +,− designates the base of travelling waves, α = 1, 2 describes the
two transverse degrees of freedom, and V (η) = −ω′′ + ω′2. For the background
described in Eqn.(E.118),

V (η) =
2σ sinh(2η) + σ2

cosh2(2η)
, (E.340)

where σ ≡
√
6/λ, where λ2 is the coupling constant of the scalar field to gravity.

The mode equation (E.339) admits analytical solutions in terms of hypergeomet-

Figure E.16.: Plot of the potential (see Eq.(E.340)), for λ = 0.1, 0.3, 0.5 (solid,
dotted, dashed line respectively).

ric functions, in terms of which the Bogolubov coefficients, and the expression
for the energy density of the magnetic field ρm can be calculated [366]. The
amplification factor with respect to the conformal vacuum peaks for the modes
with momenta such that k ≈ 1.31, and is given by

ρm
(ρm)cf

∝ exp

(
π
√
6

λ

)
, (E.341)

for η >> 1. The conditions for the spectrum to be greatly amplified today are
[366]

a0 << ctr, λ << 1,

where tr is the time at which the scalar field is negligible, in such a way that
the EM field is free again.
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At a comoving scale of about 10 kpc, the strength of conformal vacuum fluc-
tuations is of the order of 10−55 G. To reach the strength required to feed the
galactic dynamo, Bseed ∝ 10−20 G, , which is a conservative estimate, we get
from Eqn.(E.341) that λ ≈ 0.1. Taking for the comoving scale the size of the
universe (≈ 4 × 106 kpc), the amplification factor becames 1046, and we need
λ ≈ 0.07. So the strength needed in both cases can be achieved by a modest
value of λ, the coupling constant of ω to gravity.

These results were obtained in a model that did not take into account the
effect of the creation of matter by the decay of the scalar field. The solution
presented in Sect.(E.3.2), namely

a(η) = β
√
cosh(2η) + k0 sinh(2η)− 2k0(tanh η + 1), (E.342)

with β = a0/
√
1− k0, and 0 < k0 < 1/7. incorporates this feature, and its

influence on the creation of photons was discussed in [365]. The result, displayed
in Fig.(E.11.4), shows that there is a substantial increment in the number of
photons if we take into account the effect of matter creation.

Figure E.17.: Plot of the mean number of photons as a function of the conformal
time for m = 20, in the case without matter (dashed line) and for
the case with matter creation (full line), for λ = 1.

E.11.5. Appendix

In this appendix, we give a short summary of two gauge-invariant methods that
can be applied to study the perturbations in cosmological scenarios.
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Perturbations using Bardeen variables

The fluctuations of the metric tensor can be classified by their properties under
spatial rotations into scalar, vector and tensor perturbations. In the linear
theory, their evolution is decoupled. In the case of scalar perturbations, the
perturbed metric of a homogeneous and isotropic spacetime can be written as

ds2 = a2(η)
{
(1 + 2φ)dη2 − 2B;idη dx

i − [(1− 2ψ)γij + 2E,i;jdx
idxj]

}
,

(E.343)
where γij is the metric of the 3-space. We shall sketch the case of hydrodynam-
ical perturbations of a perfect fluid 106 with energy-momentum tensor

T αβ = (ρ+ p)uαuβ − pδαβ. (E.344)

Following [28], it is convenient to build, from the four variables appearing in
(E.343), two gauge-invariant quantities, given by

Φ = φ+
[(B − E ′)a′]′

a
, Ψ = ψ − a′(B − E ′)

a
.

In terms of these, the gauge-invariant perturbed EE are

−3H(HΦ +Ψ′) +∇2Ψ+ 3kΨ =
1

2
a2δT

(gi)0
0 , (E.345)

(HΦ +Ψ′),i =
1

2
a2δT

(gi)0
i , (E.346)

[(2H′+H2Φ+HΦ′+Ψ′′+2HΨ′−kΨ+
1

2
∇2(Φ−Ψ)]δij−

1

2
γij(Φ−Ψ)|kj = −

1

2
a2δT

(gi)i
j ,

(E.347)

where the δT
(gi)α
β are gauge invariant combinations of the δT µν , B, and E (see

[293] for details).
In the case of hydrodynamical matter, the most general form of the perturba-

tion can be written in terms of the perturbed energy δρ, the perturbed pressure
δp, the potential V of the 3-velocity vi(t, ~x), and the anisotropic stress σ as
follows [28]:

(δT µν) =

(
δρ −(ρ0 + p0)a

−1V,i
(ρ0 + p0)aV,i −δpδij + σij

)
.

For the case of a perfect fluid, with energy-momentum tensor given by Eqn.(E.344),
σij = 0.
The pressure perturbation can be split into its adiabatic and entropy compo-

nents as

δp =

(
∂p

∂ρ

)

S

δρ+

(
∂p

∂S

)

ρ

δS ≡ c2sδρ+ τδS. (E.348)

106For other cases, such as s scalar field, see [293].
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Entropy perturbations may be important in the case of two-component systems,
such as plasma and radiation.
The gauge-invariant perturbations of the energy-momentum tensor can be

expressed in terms of the gauge-invariant energy density, pressure, and velocity
perturbation:

δT
(gi)0
0 = δρ(gi), δT

(gi)0
i = (ρ0 + p0)a

−1δu
(gi)
i , δT

(gi)i
j = −δp(gi)δij,

with

δρ(gi) = δρ+ρ′0(B−E ′), δp(gi) = δp+p′0(B−E ′), δu
(gi)
i = δui+a(B−E ′)|i.

From Eqns.(E.345)-(E.347) applied to this case, it follows that Φ = Ψ. Using
Eqn.(E.348), the system can be written as

Φ′′ + 3H(1 + c2s)Φ
′ − c2s∇2Φ + [2H′ + (1 + 3c2s)(H2 − k)]Φ =

1

2
a2τδS. (E.349)

(aΦ)′,i =
1

2
a2(ρ0 + p0)δu

(gi)
i . (E.350)

For adiabatic perturbations, Eqn.(E.349) yields Φ, which determines δρ(gi) through

Eqn.(E.345), and δu
(gi)
i through Eqn.(E.350).

Eqn.(E.349) can be simplified with the change of variables

Φ =

√
1

2

√
H2 −H′ + k

a2
u,

yielding

u′′ − c2s∇2u− θ′′

θ
u = N ,

with

θ =
1

a

(
ρ0

ρ0 + p0

)1/2(
1− 3ǫ

a2ρ0

)1/2

,

N = a2(ρ0 + p0)
−1/2τδS.

Vector perturbations
The most general perturbed metric including only vector perturbations is

given by 107

(δgµν) =

(
0 −Si
−Si F i

,j + F j
,i

)
,

where the vectors S and F are divergenceless. From their transformation prop-
erties, it can be shown that

σi = Si + Ḟ i

107The results quoted in this section are taken from [293].
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(where the dot means derivative w.r.t. conformal time) is a gauge-invariant
quantity. For the perturbations of the stress-energy tensor, we have

(δT αβ ) =

(
0 −(ρ0 + p0)V

i

(ρ0 + p0)(V
i + Si) p0(π

i
,j + πj,i)

)
,

where V i and πi are divergenceless. V i is related to the perturbation of the
4-velocity by

(δuµ) =

(
0

V i/a

)
.

The gauge-invariant quantities are given in this case by θi = V i − Ḟ i and πi.
Adopting the Newtonian gauge (in which F = 0), from the perturbed EE we
get

− 1

2a2
∇2Si = (ρ+ p)V i, (E.351)

− 1

2a4
∇t(a

2(Sj,i + Si,j)) = p(πi,j + πj,i), (E.352)

where ∇2 is the spatial Laplacian. From Eqn.(E.351) we get

V i
k =

1

2a2(ρ+ p)
k2Sik, (E.353)

for the Fourier modes of V and S. Assuming that there are no anisotropic
stresses, as in the case of pressureless dust, we get from Eqn.(E.352),

∇t(a
2Sik) = 0.

Hence Sik = C i
k/a

2, where C is a constant. From this and Eqn.(E.353), we get

V i
k ∝

k2C i
k

a1−3ω
. (E.354)

Note that V i
k increases for ω = 0, and stays constant for radiation, but Sik

always increases for decreasing a.

Tensor perturbations
These perturbations are built using a symmetric 3-tensor hij which satisfies

the constraints
hii = 0 h

|j
ij = 0,

in such way that the metric for tensor perturbations is

(δg(t)µν) = −a2(η)
(

0 0
0 hij

)
.

From the perturbed EE we find (see for instance [294])

h′′ij + 2Hh′ij −△hij = 2a2δT
(gi)T
ij ,
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where δT
(gi)T
ij is the gauge-invariant “pure tensor” part of δTµν . In Fourier space,

and introducing the rescaled variable hij = eijv/a, we have

v′′k +

(
k2 − a′′

a

)
vk = 0. (E.355)

The quasi-Maxwellian method

The QM method has its roots in the formulation of Jordan and his collabora-
tors [225] and uses the Bianchi identities to propagate initial conditions. The
basic idea is to identify gauge invariant quantities from the beginning, using
Stewart’s lemma [389], which guarantees that the perturbation of an object Q
is gauge-invariant if Q is either constant or a linear combination of δµν with
constant coefficients. In conformally flat models, the Weyl tensor (defined be-
low) is identically zero, so its perturbation is a true perturbation, and not a
gauge artifact. We shall see below how to obtain a minimum set of variables to
completely characterize a perturbation, along with their evolution equations.

Definitions and notation
The Weyl conformal tensor is defined by means of the expression

Wαβµν = Rαβµν −Mαβµν +
1

6
Rgαβµν ,

where

gαβµν ≡ gαµgβν − gανgβµ, (E.356)

and

2Mαβµν = Rαµgβν +Rβνgαµ − Rανgβµ − Rβµgαν . (E.357)

The 10 independent components of the Weyl tensor can be separated in the
electric and magnetic parts, defined (in analogy with the electromagnetic field)
for an observer with 4-velocity vµ as:

Eαβ = −Wαµβνv
µvν , (E.358)

Hαβ = −W ∗
αµβνv

µvν . (E.359)

The dual operation was performed with the completely skew-symmetric Levi-
Civita tensor ηαβµν . From the symmetry properties of the Weyl tensor it follows
that the operation of taking the dual is independent on the pair in which it is
applied.
It follows from these definitions that the tensors Eµν and Hµν are symmetric,

traceless and belong to the three-dimensional space orthogonal to the observer
with 4-velocity vµ, that is:

Eµν = Eνµ, Eµνv
µ = 0, Eµνg

µν = 0, (E.360)
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and similar relations for Hµν . The metric gµν and the vector vµ (tangent to a
timelike congruence of curves Γ) induce a projector tensor hµν which separates
any tensor in terms of quantities defined along Γ plus quantities defined on
the 3-dimensional space orthogonal to vµ. The tensor hµν , defined on this 3-
dimensional space is symmetric and a true projector, that is

hµνh
νλ = δµ

λ − vµ vλ = hµ
λ. (E.361)

We shall work with the FLRW geometry written in the standard Gaussian co-
ordinate system:

ds2 = dt2 + gijdx
idxj (E.362)

where gij = −a2(t)γij(xk). The 3-dimensional geometry has constant curvature
and thus the corresponding Riemannian tensor (3)Rijkl can be written as

(3)Rijkl = ǫγijkl.

The covariant derivative in the 4-dimensional space-time will be denoted by the
symbol “;” and the 3-dimensional derivative will be denoted by “‖”.
The irreducible components of the covariant derivative of vµ are given in terms

of the expansion scalar (θ), shear (σαβ), vorticity (ωµν) and acceleration (Aα)
by the standard definition:

vα;β = σαβ +
1

3
θhαβ + ωαβ + Aαvβ, (E.363)

where
σαβ = 1

2
hµ(αh

ν
β)vµ;ν − 1

3
θhαβ ,

θ = vα;α,

ωαβ = 1
2
hµ[αh

ν
β]vµ;ν ,

Aα = vα;βv
β.

(E.364)

We also define

θαβ ≡ σαβ +
1

3
θhαβ . (E.365)

Quasi-Maxwellian equations of gravity and their perturbation
We shall present in this subsection a sketch of the deduction of the equations

that govern the perturbations in the quasi-Maxwellian formalism. The details
of the calculations in this section can be found in [319]. Using Einstein’s equa-
tions and the definition of Weyl tensor, Bianchi identities can be written in an
equivalent form as

W αβµν
;ν =

1

2
Rµ[α;β] − 1

12
gµ[αR,β]

= −1
2
T µ[α;β] +

1

6
gµ[αT ,β].
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The quasi-Maxwellian equations of gravity are obtained by projecting these
equations (i.e. the Bianchi identities are taken as true dynamical equations
which describe the propagation of gravitational disturbances). The evolution
equation for the perturbations for δθ, δσµν , and δωµ, as well as 3 constraint
equations, are obtained projecting and perturbing the equation

vµ;α;β − vµ;β;α = Rµωαβv
ω

which follows from the definition of the curvature tensor. Finally we get two
more equations by projecting the conservation law T µν;ν = 0. Adding up, we
have a set of twelve equations which when perturbed yield (after straighforward
manipulations) the coupled differential equations needed to give a complete
description of the perturbation. In a general case, the variables are

V = {δEij, δHij, δωij, δσij , δπij, δAi, δqi, δρ, δθ, δV0, δVk} ,

where δqi is the perturbation of the heat flux. From now on we will concentrate
on the case of scalar irrotational perturbations. As shown in [259], it is useful to
develop the perturbed quantities in the spherical harmonics basis. It is enough
for our purposes to work only with scalar quantities, denoted by Q(k)(xi) (with
∂Q(k)/∂t = 0) and the vector and tensor quantities that follow from it, defined

by Q
(k)
i ≡ Q

(k)
,i , Q

(k)
ij ≡ Q

(k)
,i;j. The scalar Q(k) obeys the eigenvalue equation

defined in the 3-dimensional background space by:

▽2Q(k) = kQ(k), (E.366)

where k is the wave number, and the symbol ▽2 denotes the 3-dimensional
Laplacian:

▽2Q ≡ γijQ,i‖j = γijQ,i;j. (E.367)

Since the modes do not mix at the linear order, we will drop the superindex (k)
from Q. The traceless operator Q̂ij is defined as

Q̂ij = Qij +
k2

3
Qγij, (E.368)

and the divergence of Q̂ij is given by

Q̂ij
;j = −2

(
ǫ+

k2

3

)
Qi. (E.369)

Due to Stewart’s lemma, the good (since they are gauge-invariant and null in
the background) objects in the list V are δEij , δΣij , δπij, δai, and δqi. According
to causal thermodynamics the evolution equation of the anisotropic pressure is
related to the shear through [219]

τΠ̇ij +Πij = ξσij (E.370)
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in which τ is the relaxation parameter and ξ is the viscosity parameter. For
simplicity we will take the case in which τ can be neglected and ξ is a constant
108. Eq.(E.370) then gives

Πij = ξσij, (E.371)

and the associated perturbed equation is

δΠij = ξ δσij . (E.372)

We shall decompose the four independent and gauge-invariant perturbations as
109

δEij =
∑

k

E(k)(t)Q̂
(k)
ij ,

δΣij =
∑

k

Σ(k)(t)Q̂
(k)
ij ,

δAi =
∑

m

ψ(m)(t)Q
(m)
i ,

δqi =
∑

m

q(m)(t)Q
(m)
i .

It can be shown that ψ is a function of Σ and E [319]. It follows that, restricting
to the case q = 0 (no energy flux) 110, E(t) and Σ(t) constitute the fundamental
pair of variables in terms of which the dynamics for the perturbed FLRW geom-
etry is completely characterized. Indeed, the evolution equations for these two
quantities (which follow from Einstein’s equations) generate a dynamical system
involving only E and Σ (and background quantities) which, when solved, con-
tains all the necessary information for a complete description of all remaining
perturbed quantities of the FLRW geometry.
The evolution equations are given by [319]

Σ̇ = −E − 1

2
ξ Σ− k2 ψ, (E.373)

Ė = −(1 + λ)

2
ρ Σ−

(
θ

3
+
ξ

2

)
E

− ξ

2

(
ξ

2
+
θ

3

)
Σ− k2

2
ξ ψ. (E.374)

108In the general case ξ and τ are functions of the equilibrium variables, for instance ρ and
the temperature T and, since both variations δΠij and δσij are expanded in terms of the

traceless tensor Q̂ij , it follows that the above relation does not restrain the kind of fluid
we are examining. However, if we consider ξ as time-dependent, the quantity δΠij must
be included in the fundamental setM[A].

109In fact,
√
δEijδEij is the only quantity that characterizes without ambiguity a true per-

turbation of the Debever invariants [319].
110We further assume an equation of state relating the pressure and the energy density, i.e.

p = λρ, which is preserved under arbitrary perturbations.
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As mentioned before, ψ can be expressed in terms of E and Σ 111:

(1 + λ) ρ ψ = 2

(
1 +

3ǫ

k2

)
a−2 [−λE +

1

2
λ ξ Σ +

1

3
ξ Σ]. (E.375)

Thus the set of perturbed equations reduces to a time-dependent dynamical
system in the variables E and Σ:

Σ̇ = F1(Σ, E), Ė = F2(Σ, E), (E.376)

with

F1 ≡ −E −
1

2
ξ Σ− k2 ψ, (E.377)

and

F2 ≡ −
(
1

3
θ +

1

2
ξ

)
E − k2

2
ξ ψ

−
(
1

4
ξ2 +

(1 + λ)

2
ρ+

1

6
ξθ

)
Σ (E.378)

where ψ is given in terms of E and Σ by Eqn.(E.375), so the system (E.376)
can be written as (

Ė

Σ̇

)
=

(
α β
γ δ

)(
E
Σ

)
, (E.379)

where

α ≡ −θ
3
, β ≡ −1 + λ

2
ρ, δ = 0, γ =

6λ

1 + λ

(
ǫ+

k2

3

)
1

a2ρ
− 1.

Since
∂Ė

∂E
+
∂Σ̇

∂Σ
= −θ

3
,

the system (E.379) is not Hamiltonian due to the expansion of the universe.
Nonetheless, new variables (Q,P ) can be introduced in such a way that the
system (E.379) is Hamiltonian. Defining

Q ≡ amσ, P = anE,

it is easily shown from the Poisson brackets that the otherwise arbitrary powers
m and n must satisfy the relation m + n = 1 for the variables Q and P to be
canonically conjugated. It follows that

P̈ =M1P +M2Q.

The choice n = 3λ/2 + 2 yieldsM2 = 0, and P satisfies the equation

P̈ + µ(t)P = 0,

111Except when (1 + λ) = 0, see [319] for this case.
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with

µ(t) =

(
5

4
λ+

2

3

)
ρ+

1

a2

[
3λ

2

(
3λ

2

)
ǫ− λk2

]
,

which is equivalent to Eqn. (E.282).
This method can be extended to vector and tensor perturbations in the FLRW

model [320]. In the first case, the observable quantities are described in terms
of the vorticity and the shear, while the electric and magnetic parts of the Weyl
tensor suffice for the gravitational waves 112. The three types of perturbation are
describable in Hamiltonian form, thus paving the way to canonical quantization
[321], which was performed for scalar, vectorial, and tensor perturbations using
the squeezed states formalism in [321]. In fact, in the case of scalar perturba-
tions, the Hamiltonian in terms of the (Q,P ) variables (with the choice m = 0)
is given by

H =
h1
2
Q2 +

h2
2
P 2 +

h3
Q
P,

with

h1 =
1 + λ

2

ρ

a
, h2 =

6λ

1 + λ

(
ǫ+

k2

3

)
1

aρ
− a, h3 = 0.

E.11.6. Relation between the two methods

The Bardeen variables (Φ,Ψ) are related to the quasi-Maxwellian variables
(E,Σ). For instance, in the case of scalar perturbations the relation between E
and Φ (for a perfect fluid) is given by [189, 224]

E = −k2Φ,

from which the relation for the spectrum given in Eqn.(E.294) follows.

E.12. Conclusion

The idea of a bouncing universe has been considered since the early days of
relativistic cosmology, as shown in this review. However, only a few analytical
solutions describing a nonsingular universe served as a starting point to build
a complete cosmological scenario. The main reason for this neglect by the
majority of the physics community in the last 30 years of the 20th century was
the strong influence of the singularity theorems, which led to the belief that
some sort of singularity was inevitable in gravitational processes. The situation
should have changed with the recently discovered positive acceleration of the
universe since, in the realm of GR, the accelerated expansion means that the
matter content must satisfy the condition ρ + 3p < 0, which is precisely one
of the conditions needed to have a bounce in Einstein’s gravity. This violation

112Perturbations in the Kasner solution were studied in [322].
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of the SEC was already accepted in the early 80’s in order to have a phase
of inflationary expansion, and nowadays several systems are known which do
not satisfy the inequality ρ + 3p > 0 (see for instance [27]). Hence, there is
mounting evidence against one of the main theoretical prejudices forbidding
bouncing universes in GR. Surprisingly, nonsingular models have not attracted
the interest that should be expected based on the preceding considerations 113.

Almost contemporaneous to the discovery of the accelerated expansion was
the gradual advent of a handful of cosmological models based on nonsingular so-
lutions. These models aimed at solving the most stringent problems of the (pre-
inflationary) cosmological standard model: the initial singularity, the isotropy
and homogeneity of the currently-observed universe, the horizon problem, the
flatness problem114, and the formation of structure 115. Bouncing universes
have partially met these challenges. The singularity is obviously absent, and
its avoidance requires any of the assumptions listed in Sect.E.1.1, which range
from the violation of SEC (in GR) to quantum gravitational effects.

As explained in Sect.E.1, a phase of accelerated contraction may solve the
flatness problem in GR, and may also get rid of particle horizons (see for instance
[179]) 116.

Finally, the amplification of primordial seeds (a problem prior to the forma-
tion of structure) in bouncing universes has been intensely debated recently
(see Sect.E.11). The asymptotic behavior of these universes is markedly dif-
ferent from that of the SCM or inflation. The universe at past infinity starts
to collapse from a flat empty structure-less state that at past infinity can be
approximated by Minkowski geometry written in terms of Milne coordinates
117. The transmission of the quantum fluctuations from this initial state to
the post-bounce phase is strongly model-dependent, but there are some mod-
els which yield a scale-invariant spectrum for the scalar perturbations in the
post-bounce phase (see Sect.E.11.1).

An offspring of the bouncing models are the cyclic universes (see Sect.E.10).
The cyclic models also attempt to solve the above-mentioned problems, and
also may offer a new view on the initial conditions: since by definition, there

113It may be argued that this lack of interest is due to the fact that the bounce is expected
to involve scales where quantum effects render GR inapplicable. But this is true also of
the singularity theorems, as was known already in the early 70’s. Moreover, there is no
evidence against the possibility of a bounce in the classical regime [316], as follows from
some of the models presented in Sect.E.11.1, see also [158].

114Note that the flatness problem may in principle not be a problem in gravitational theories
other than GR (see Sect.E.2.2).

115In spite of its historical importance, the so-called monopole problem is not included in this
list, since there is still room for it to be be considered as a problem of field theory first,
and then (perhaps) of the standard cosmological model, see for instance [264, 122].

116See however the concerns in [89] about the efficiency of some bouncing models in erasing
possible initial inhomogeneities.

117We have also seen that there are eternal (non-bouncing) universes, that start in a de Sitter
regime.
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is neither a beginning nor an end of time in these models, there is no need to
specify initial conditions. Generically, cyclic universes share the problems of the
universes that bounce only once. In addition, they must assure that the large
scale structure present in one cycle (generated by the quantum fluctuations in
the preceding cycle) is not endangered by perturbations or structure generated
in earlier cycles, and will not interfere with structure generated in later cycles.
One of the latest cyclic models, presented in [155], claims to have successfully
faced these issues (however see [265]).
As compelling a scenario may (or may not) seem, the ultimate judge is ob-

servation, so we can ask if there are any that may point to the occurrence of a
bounce. As far as we know, there are two possibilities 118:

• As discussed in Sect.E.11.1, the tensor spectrum of a nonsingular uni-
verse has a unique feature. As an example, the SPBB models predict a
stochastic spectrum of gravitational waves whose amplitude increases as
a function of frequency in some frequency ranges (see Sect.E.11.1), hence
avoiding the bounds due to the CMB, pulsar timing, and Doppler tracking
[276]. The parameter space of the “minimal” SPBB model [175] was lim-
ited using LIGO results in [276]. Notice also that nonsingular universes
may produce vector perturbations (see Sect.E.11.1).

• The bounce may cause oscillations, that will be superimposed on the power
spectrum of scalar perturbations. These oscillations would also appear in
the WMAP data, linked to the spectrum through the multipole moments
which are in turn defined through the two-point correlation function of
the temperature fluctuations. [281]. Let us note however, that such oscil-
lations may be due not only to a bounce, but also to transplanckian effects
[281] or to non-standard initial conditions in the framework of hybrid in-
flation [90].

We would like to close by pointing out that although they do not yet give a
complete description of the universe, a better understanding of bouncing models
in classical GR should be attempted since they are inevitably imposed upon us
by the apparently observed violation of the strong energy condition. It must
also be noted that there are at least two more reasons to attempt this task.
First, the current solution to the problems of the standard cosmological models
(namely inflation) is successful, but has several problems (see Sect.E.1). Second,
even if bouncing models do not succeed in yielding a complete description of
the universe (thus offering an alternative to inflation 119), they may throw light
upon the singularity problem (an issue in which inflation has nothing to say).

118Some bouncing models in GR were severely restricted in [390], using SNIa data, CMB
analysis, nucleosynthesis, and the age of the oldest high-redshift objects.

119The comparison of bouncing models with the inflationary scenario has been undertaken in
several articles (see for instance Refs.[179] and [263]).
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Summing up, we have seen in this review that bouncing universes have some
attractive features, but they are not complete yet: much work is needed to
achieve a stage in which their predictions can match those of the cosmological
standard model. Therefore, we hope this review encourages further develop-
ments in nonsingular cosmologies.
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In the second half of the 1970’s, the attention of physicists was drawn to pro-
cesses of a global nature, namely cosmic processes. This was ensued by intense
activity throughout the community of physicists in various areas, many of whom
were led to migrate to Cosmology. Such a broad and intense displacement, in-
volving so many scientists, requires proper sociological analysis of the scientific
practice in order to provide insights into the transformation Cosmology was
going through and to the changes in the traditional mode cosmological studies
had been conducted until then.
This activity produced numerous proposals of solutions to some cosmologi-

cal problems and prompted a reformulation of traditional questions of Physics,
thanks to the reliability that could be attributed to the cosmic way of investi-
gating nature, a fact acknowledged by the international scientific community
Up until the late 1960s, Cosmology attracted very little interest, apart from a

small group of scientists working in the area. There are several reasons one could
attribute to the causes of this lack of interest. Though dissemination of activities
in Cosmology had started in that decade, the 1970s could be considered the
split between one attitude and the other, and the popularization of Cosmology
in the overall community of physicists was achieved in the 1980s. In fact, it
was in this decade that major conferences brought cosmologists, astronomers,
relativist astrophysicists (traditionally, those who dealt with the Universe in its
totality), and theoretical high energy physicists (who examined the microcosmos
of elementary particles) together in a single event. One remarkable example was
the US Fermilab 1983 Conference, which was given the suggestive title of Inner
Space / Outer Space.
There have been concerted reasons contributing for this growth in Cosmology,

some of which are intrinsic to this science while others are totally independent of
it. This is not the place for such an inventory, but, just for clarifying purposes,
one could give two examples. One, internal to Cosmology, is related to the
success of the new telescopes and space probes, which yielded a huge amount
of highly-reliable new data. Another, of an extrinsic nature, was the crisis of
elementary particles physics in the 1970s, which, for the purposes of its own
development, required the construction of huge and extraordinarily expensive
high-energy accelerators, which faced political hindrances in Europe and in the
United States.
The evolutionary character associated to the geometry discovered by Russian

mathematician A. Friedmann, who described a dynamic expanding Universe,
was thus the territory of choice to substitute in the minds of high-energy physi-
cists, for the lack of particle accelerators, machines that could not be accom-
plished due to financial reasons. Such displacement was associated with the
successes of Cosmology. Indeed, the standard model of the Universe was based
on the existence of a configuration that described its material content as a per-
fect fluid in thermodynamic balance, whose temperature scaled as the inverse
of the expansion; that is, the smaller the Universes total spatial volume, the
greater the temperature. So, in the early times of the current expansion phase,
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the Universe would have experienced fantastically high temperatures, thereby
exciting particle states and requiring the knowledge of the behavior of matter
in situations of very high energies for its description. And, most conveniently,
for free, without costs: all it took was to look at the skies.
It was within this context that the Brazilian School of Cosmology and Grav-

itation, BSCG, became a national and international endeavor , promoting the
interaction between different physicists communities, involving astronomers, rel-
ativists, cosmologists, and theoretical high-energy physicists. It may not be an
overstatement to say that the history of Cosmology in our country may be
revealed through the analysis of the history of the BSCG.

Moving Toward a Second Copernican Revolution?

The booming interest for Cosmology, as recorded in the past few decades,
has yielded several consequences, but perhaps the most remarkablethough not
yet recognized as such shall be that it is inducing an effort to re-found Physics.
To mention but one example that can help us understand the meaning of this
re-founding, we could refer to Electrodynamics.
The success of Maxwells linear theory in describing electromagnetic processes

was remarkable along the 20th Century. The application of this theory to the
Universe, within the standard scenario of spatial homogeneity and isotropy, pro-
duced a number of particular features , including some unexpected ones. Among
the latter, the one with most formidable consequences was the demonstration
that the linear theory of Electromagnetism inevitably leads to the existence of
a singularity in our past. That is, the Universe would have had a finite time to
evolve and reach its current state.
This was the single most important characteristic of the linear theory since it

led to the acceptance, in the scientists imagination, that the so-called theorems
of singularity discovered in the late 1960s would, in effect, be applicable to our
Universe.
However, in the following decade, a slightly more profound criticism changed

this interpretation, thus rendering the consequences of theorems less imposing.
This involved a lengthier r analysis of the mode through which the electromag-
netic field is affected by the gravitational interaction. That it is affected, there
had been no doubt, because this property was at the basis of the very theory
of General Relativity, given that the field carries energy. What was yet to be
learned, in detail, , was how to describe this action and which qualitative differ-
ences t the participation of the gravitational field could provoke. It soon came
out that there was no single mode to describe this interaction. This is due to
the vectorial and tensorial nature of electromagnetic and gravitational fields,
respectively. Several proposals for this interaction were then examined.
One of these changes to Electromagnetism, motivated by the gravitational

field, seemed to be somehow unrealistic because it could be naively interpreted as
if the field transporter, the photon, acquired a mass in this process of interaction
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with the geometry of space-time, through its curvature. Moreover: this mass
would depend on the intensity of this curvature. In fact, to adhere to the
technical terminology, it was a non-minimal coupling between both fields: a
mode of interaction that does not allow the behavior of the electromagnetic
field to be reducedby using the Principle of Equivalenceto the structure that this
field possesses in the idealized absence of a gravitational field. , This coupling
radically changes the properties of the geometry of the Universe in the spatially
homogeneous and isotropic scenario. Just to mention a new and remarkable
characteristic, the electromagnetic field, under this mode of interaction with the
gravitational field, produces an Eternal Universe, without singularity, without
beginning, extending indefinitely to the past. It is not difficult to show that this
interaction also generates a non-linearity of the electromagnetic field.
This property led the way to think about other non-linear feature of the elec-

tromagnetic field where this form of interaction with gravitation was not domi-
nant. These features did not correspond to non-linear corrections to Maxwells
Electromagnetism such as those obtained by Euler and Heisenberg, of quan-
tum origin, though they could contain them. Regardless of these possibilities
allowed by the quantum world, physicists started to think about other origins
for the non-linearity: they should be thought as if Maxwells equations with
which Electromagnetism had been treated this far would be nothing more than
approximations of a more complex form associated to a non-linear description.
This non-linearity should appear as a cosmic mode of the field, where linearity
is locally an approximation, thereby inverting the traditional way of thinking
non-linearity as corrections to the basic linear theory.
This simple example allows for the introduction of a fantastic situation that

Cosmology would be producing and that we can synthesize in a small sentence
of great formal consequences: the extrapolation of terrestrial Physics to the
entire Universe should be reviewed.
The old generalization mode is a rather natural and common procedure among

scientists. Thus, by extrapolation, even in conditions that have never been
tested before, we go on legislating until new physics can stop, block, limit this
extension of the local scientific knowledge .
In other words, the considerations above seem to point to the need of a new

Copernican criticism. Not quite the one that removed us from the center of
the Universe, but another, arguing against the extrapolation scientists have
been resorting to. That is, to think that a global characteristic should not be
attributed to the Laws of Physics and that, from this perspective, the action of
discarding global cosmological processes in building a complete theory of natural
phenomena would be legitimate.
That is, these Laws may take forms and modes that are different from those

with which, in similar but not the same situations, ”terrestrial Physics was
successfully developed. This analysis, that may lead to a description different
from that physicists are used to, which becomes more and more necessary, even
indispensable, is what we refer to as re-founding Physics through Cosmology.
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We may quote English physicist P.A.M. Dirac and Brazilian physicist C. Lattes
as recent precursors of this way of thinking. Unfortunately, the practical mode
they proposed for a particular re-foundation was too simple, thus allowing for a
powerful reaction that shunned these ideas to the bordering and swampy terrain
of speculation. Recent and formidable advances in Observational Cosmology
allow us to accept that the time is coming when an analysis of this re-foundation,
slightly more sophisticated than that simple modification of the fundamental
constants as Dirac and others intended, may be seriously undertaken.

Antecedents of the Brazilian School of Cosmology and Gravitation

At the end of January, 1971, my post-doctorate supervisor in Oxford, the
renowned scientist Denis Sciama, invited me for a meeting at the All Souls
College to which some scientists who worked in his research group were also
invited (R. Penrose, S. Hawking, G. Ellis, W. Rindler, among others–Apart
from myself, of all these, only Penrose and Rindler showed up). The goal was
to informally discuss some major issues of Physics, particularly those related
to a science that was experiencing intense activity back then: Cosmology. In
a given moment of that meeting, Sciama said he considered it important that
we participated in the first major School of Cosmology that the French were
organizing for the coming summer, possibly July, in a beautiful place in the
Mediterranean, in the small island of Cargse, Corsica.
It was a very special situation and it came at a crucial moment of my decision

to dedicate myself to Cosmology. One week before, when I had participated
in a conference at the International Center for Theoretical Physics (ICTP) in
Trieste, I had talked to a CBPF physicist who had just arrived from Brazil and
made some comments on my decision to dedicate to Cosmology that caused me
to become apprehensive. His comments were that a decision had been made
that it would be very important for Brazil and the CBPF that I shifted my
interests and started a program to guide my research efforts to a more useful
area for the country, such as some sector of solid state physics. And, he added,
renewal of my doctorates scholarship could depend on my decision. This type of
action was not uncommon in those days. I dont know whether such interference
would happen today. At least, not with that lack of subtlety! My decision
had already been made and my scholarship was renewed, particularly thanks
to a Brazilian physicist who worked in Geneva like myself, though he was not
at the Geneva Universitys Institut de Physique but rather at CERN: Roberto
Salmeron. After learning of the evolution of my dissertation work, he told me he
would be supporting my decision to choose a path that looked totally estranged
from the major motivation of most scientists, that is, Cosmology. If I allow
myself to wander a bit into this incident, it is just to show the general state
of affairs a scientist had to overcome back then in order to address Cosmology.
Curiously enough, less than ten years later, Cosmology started a formidable
phase of expansion, and has attracted an ever bigger number of scientists since
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then. Having said that, let us go back to Corsica.
The Cargèse School was an enormous success. In attendance were great names

of Cosmology coming not only from England and the United States, such as
Schucking, Silk, Steigman, Harrison, Rees, Ellis, and others, but also some
European ones, particularly professor Hagedorn, who was very successful at the
time with his theory that postulated the existence of a maximum temperature
inducing a new perspective on the singularity of the standard model.
For various reasons, the big names missing in that meeting were the repre-

sentatives of the Soviet School of Cosmology who, nevertheless, attracted my
attention because their approach seemed to be more imaginative than the con-
ventional proposals by European and American physicists. However, they were
the ones who eventually commanded the thoughts of the western community of
scientists for the coming decades, with some beautiful exceptions.
A simple and superficial exam of the list of lecturers that participated in the

BSCG shows that this Russian School has been really active, from the very
first meeting to date. Thus, the BSCG have managed to popularize, especially
among Brazilian scientists, many ideas from those Soviet physicists and, later,
from the Russian community. The peculiarity and originality of this Russian
School have marked this unique participation and often allowed it to become the
main outlet for ideas that are alternative to the ones dominating the panorama
of Cosmology. To share a particular and extremely relevant example, suffice
it to mention the course program offered in 1979 at the II BSCG, in Joo Pes-
soa, by Professor Evgeni Lifshitz who, based on his previous efforts with V.
Belinski and I. Khalatnikov, addressed the way in which the Universe behaved
in the vicinities of a singularity, raising a daring hypothesis of the existence of
a primordial anisotropic phase. Nearly thirty years later, in the most recent
Marcel Grossmann Congress held in 2006 in Berlin, one of the plenary sessions
conducted by the French physicist Thibault Damour attempted to revive the
original ideas by Belinski-Lifshitz-Khalatnikov , adapting them to modern pro-
posals of cosmological investigation.
The Cargèse School lasted two wonderful weeks, under the happy and casual

coordination of Professor E. Schatzman. Himself an enthusiast of scientific
communication, he brought together the young participants , sometimes at the
beach and others at tiny Cargèse’s downtown area, for some beautiful starry
evenings of explanations to awed locals about recent discoveries in Astrophysics
and Cosmology . After a brief introduction to the behavior and structure of stars
and galaxies, our coordinator urged listeners to ask questions of all sorts to the
scientists. Those questions were never limited to Astrophysics, Cosmology, and
Physics in general; they rather and inevitably overflowed into a scientists social
role, a theme Schatzman was passionate about.
In one such evening, feeling the cold breeze from the sea, concentrated around

a small bonfire, I told him that the meeting had been so exciting to me, so
informative, and such a unique experience, that I would try to organize similar
meetings as soon as I got back to my country. Being so kind and heedful of

2177



others, as usual, he committed himself by saying that I could certainly count on
his support, adding one question about the number of scientists working in that
area in Brazil. I answered that though there were d a few physicists working in
isolation who could follow up on the development of modern properties of the
gravitation theory, there was nothing systematic going on in my country. He
then added that if the idea was to be successful, I should try to create first a
small core composed by young scientists who were to receive solid training in
the theory of gravitation and r one or two years of Cosmology studies. When I
returned to CBPF, in the second semester of 1972, that was exactly what I did,
creating the Gravitation and Cosmology Group of CBPF, which turned up to be
the seed of todays Institute of Cosmology Relativity and Astrophysics (ICRA).

First School: Success of the Teacher-Student Interaction

During the year of 1976, the Brazilian Center for Research in Physics went
through a radical change. Aware of the constant difficulties posed to a spe-
cial institution such as the CBPF, focused on fundamental research, the federal
government finally accepted to integrate this center to a federal agency. The
CBPF thus became the first physics research institute to be directly incorpo-
rated to the National Research Council (CNPq), currently the National Council
for Scientific and Technological Development.
The CBPF started its new phase with the arrival of Antonio Csar Olinto,

designated as head of the new CBPF/CNPq. It was within this framework of
renewal that Cosmology conquered its space and came forth as a new area of
the endeavors of CBPF. The history of this period is rich in debates between
personalities who built the history of Physics in Brazil, but I will talk about
it in another occasion. Of our interest here is only the outcome, as the head
of the CBPF agreed to grant financial and institutional support to the First
Brazilian School of Cosmology and Gravitation, which would later be known
as Brazilian School of Cosmology and Gravitation when it went international,
therefore acquiring the acronym BSCG.
This School was divided into two parts, involving basic programs that lasted

a full week, and advanced seminars whose classes could be limited to one up to
three sessions at most. Interestingly enough, the BSCG is structured as such,
to date.
The budget of the School was very small, as it was basically funded by the

CBPF. However, the enthusiasm of the students was such that turned it into a
major success, contrary to the pessimistic forecast of various colleagues. To men-
tion but one example of this important student co-participation, I recall their
performance in organizing the School texts. Though the faculty had carefully
prepared their class notes, we had no possibility to print them. The solution was
then offered by the students themselves: they mimeographed the notes, created
a strongly-yellow-colored cover and manually bound all of the texts!
This willpower on the part of the students greatly encouraged the staff, who
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then spent the entire School in permanent activity, thus producing a student-
teacher interaction that lingered on as a hallmark and operated as a trigger for
CBPFs director to convince the relevant authorities (CNPq, Capes) to provide
the funds in the subsequent year for the 2nd School, much more complete and
administratively more organized than the 1st .
Both the 1st and the 2nd School (held respectively in 1978 and 1979) were a

means to consolidate the basic structure of Gravitational Theory for our young
physicists, as well as the crucial mathematical tools and techniques for a better
understanding of the General Theory of Relativity. Besides this basic endeavor,
some crucial concepts of theories that are correlated with Gravitation and the
General Theory of Relativity involving rudiments of the Unified Theories and
some basic aspects of Relativistic Astrophysics were discussed. This may be
confirmed with an overview of the course programs offered for the 2nd School.
In the 3rd and 4th Schools (held in 1982 and 1984, respectively), notions of

Astrophysics presented in the previous Schools were elaborated. Furthermore,
there was a focus on the study of the Theory of Elementary Particles and its last
association with the so-called Standard Model of Cosmology, identified with the
notion of an explosive and hot start for the Universe (known in the literature
as the Hot Big Bang Hypothesis).

The Internationalization

In 1987, the 5th School of Cosmology and Gravitation could increase the
knowledge base and the analysis presented in the previous Schools, thus evolving
to a broader and deeper debate of the feasible potential alternatives to explain
the large scale behavior of the Universe. Back then, courses based on the Stan-
dard Model were presented, as well as several talks dealing with the idea of an
Eternal Universe, without beginning or end. Besides these specific approaches,
the relation between Quantum Physics and Gravitation was examined in detail.
Though this union is still far from being complete, the basic ideas involving
quantum principles of gravitation were presented in the 5th School that were
later developed in the 6th School.
The 5th School was also the first one opened to the international scientific

community: researchers and students from twenty-four (24) countries were en-
rolled and, from that 5th edition onward, the Schools name became international
and it was then renamed as the Brazilian School of Cosmology and Gravitation.
The lectures presented there also reflected this internationalization.
The ideas preliminarily presented in the previous School were developed dur-

ing the two weeks of the 6th School of Cosmology and Gravitation, in 1989.
The courses underlined the emphasis given to quantum processes in Cosmology.
That fact is a natural evolution of the previous events, reflecting the important
role played, even then, by the examination of quantum processes in Cosmol-
ogy. Besides these course programslasting a week eachsmall working meetings
were held as parallel courses. Amongst these additional events, two were par-
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ticularly important: the opening of a session of student-participant seminars,
thus promoting greater interaction between them and exhibitors; the start of
an extraordinary debate session where the ten presenting professors individually
exposed their ideas on the main current issues of Cosmology and related areas.
This experience was so satisfactory that it was integrated in the organization of
subsequent Schools.
In 1991, due to financial difficulties of the countrys Science/Technology sys-

tem, the periodicity of the Brazilian Schools of Cosmology and Gravitation could
not be maintained. Nevertheless, in order not to hinder an entire generation of
young scientists, a small meeting was held at CBPF: A Crash-Course on July
15-26, 1991, whose program was as follows: Cosmology: M. Novello Gravitation:
I.D.Soares Relativist Thermodynamics: J. M. Salim Hamiltonian Formulation
of Gravitation: N. Pinto Neto Quantum Theory of Fields with Curved Spaces:
N. F. Svaiter This crash-course was attended by 79 student/grantees of different
Brazilian universities and was an important basis for later studies and projects.

New models on the creation of the Universe

In 1993, the 7th Brazilian School of Cosmology and Gravitation was again held
in two weeks. Besides presenting an overall panorama of the main conquests
and unresolved issues of Cosmology today, this School enabled the continued
discussion on a most formidable issue : the creation of the Universe. The main
novelty was due to a general change in the scientists behavior concerning the
remote past of our Universe: whereas up until recently the role of an explanation
generator for all of natures ulterior processes was attributed to an inaccessible
initial explosion, back then several competing proposals started to appear in
search for access to the issue of creation, both the classical and the quantum
ones. So, models of the Eternal Universe without singularity were discussed in
this School, at various moments. There was, however, general consensus that
the Universe would have been through an extremely hot period. It means that
either a process of quantum tunneling or a previous classical collapsing phase
should provide the conditions for a likely moment of tremendous concentration
of matter/energy. Different proposals of that sort were examined in the courses
and seminars of this School.
The 8th Brazilian School of Cosmology and Gravitation, held in 1995, consoli-

dated the international nature of the School, not only for the fact that it involved
professors who enjoyed high prestige in the international scientific community
but also, and mostly, because of the large number of student-participants com-
ing from other countries. In this School, special emphasis was given to quantum
processes and their consequences in an expanding Universe. Not only quan-
tum processes of matter in classical background (semi-classical approach) were
examined but also different proposals for quantum treatment of the very gravi-
tational field were proposed. The recent attempts to explain the existence and
formation of major structures (galaxies, clusters etc.) were also examined and
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discussed either from a more observational and classical perspective or through
elementary quantum processes.
Two round-tables were also organized: Loss of Information from Black Holes

(coordinated by Prof. W.Israel) and Time Machines (coordinated by Prof.
A.Starobinsky). Furthermore, a number of seminars on other topics of interest
to Cosmology and related areas were included.

A Speaker is given the Nobel Prize

The 9th BSCG happened in 1998. Its international nature appears when we
list of the countries where participating scientists came from: Brazil, Argentina,
Canada, Denmark, France, Israel, Italy, Mexico, Portugal, Russia, Spain, United
States, and Venezuela. In this School, we commemorated twenty years of its
existence. On the occasion, Professor Yvonne Choquet-Bruhat was honored
with a tribute pronounced by Prof. Werner Israel. Special emphasis was given
to localized astrophysical processes, particularly e to properties of black holes.
A series of lectures on CMBR was delivered by Professor G. Smoot, who was
subsequently awarded the Nobel Prize, precisely for his endeavors in that area.
The theory of the gravitational field and the analysis of field theories on the light
cone and on geometries representing expanding universes were also presented.
The 10th School was held in July, 2002, and involved scientists from 16 coun-

tries: Brazil, Germany, Bolivia, Canada, Chile, Denmark, France, England,
Ireland, Italy, Mexico, Poland, Russia, United States, and Turkey. At this mo-
ment, the BSCG consolidated its tendency to open the exam of non-conventional
issues not only in Cosmology but also in related areas. A brief examination of
the topics therein is enough to underline this fact. This tendency continued on
in the other Meetings.

Some scientist’s comments on the BSCG

In 1988, CBPFs Group of Cosmology and Gravitation intended to give a per-
manent role to the Schools by creating a Cosmology Center, under the Ministry
of Science and Technology. At that time, several physicists (at the request of
the minister) were asked for their opinions on the group, as transcribed below.
Particular attention should be paid to the support I received from great Brazil-
ian scientist Csar Lattes. Whenever Lattes came to Rio, we often talked about
this possibility. On these occasions, Lattes would air his ideas, similar to Paul
Diracs, on local effects of the properties of the evolution of the Universe, saying
he had solid arguments to show how Physics very interactions would depend on
the Universes state of evolution. Years earlier, Vitrio Canuto had presented an
extensive review of Diracs ideas in the School and, in the early 1970s, my CERN
collaborator P. Rotelli and I had produced an alternative to Diracs proposal on
the cosmic dependence of weak interactions. Lattess ideas did not possess sim-
ilar development to Diracs, and were very close to mine, that being the reason
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why we started to write the draft (for a yet unpublished paper) together.

Lattes used to think it was totally unnecessary to write about his support
to my idea of transforming the Schools of Cosmology and Gravitation into a
permanent and continuous forum entirely focused on cosmological issues. I
eventually convinced him that this letter of his could be important to openly
communicate his opinion.

We have reproduced the content of letters by some professors where their
opinions on the School are recorded.

• YVONNE CHOQUET-BRUHAT (19/9/1988) (Professor at the University
of Paris VI; Director of the Relativist Mechanics Laboratory and Fellow
of the French Academy of Sciences):

() The Brazilian Schools of Cosmology and Gravitation that you have
organized since 1978 have proved extremely successful both for the ad-
vancement of science at an international level, and for the development of
a remarkably good Brazilian group in these fields. Having myself attended
two of these Schools, I have been able to appreciate their excellent orga-
nization, the high level course programs on the most up-to-date topics by
the best specialists in the field, a fruitful experience to all by the active
participation of many in the audience, from the Director of the School
to the youngest colleagues. These meetings have certainly contributed to
obtaining many results in the fields of Cosmology and Gravitation, which
have given your group the high reputation that it enjoys internationally.

• RUBEN ALDROVANDI (29/09/1988) (So Paulo Institute of Theoretical
Physics):

Although I think you know my opinion on the CBPF Group of Cosmology
and Gravitation and on the Brazilian School it has been organizing for so
many years, this seems to be a good opportunity to put it down in written
words. The Group is the only one worthy of this name in Brazil, as
other people working on those subjects never really seem to get their act
together. I have very high regards for the quality, coherence andin Brazil
this is essentialendurance shown during all the difficult times the Group
has been in existence. As to the School: I have been in many Schools, and
most are fairly good, but have never met one that is better organized than
this. (...) Such an institution would give stability to the School and, I am
convinced, greatly contribute to the development of activities in the sister
sciences of Cosmology and Gravitation. For the reasons given above, it
is a matter of course that the CBPF Group and its School are the ideal
nucleation centre for the Institute.

• EDWARD W. KOLB (23/09/1988) (Professor of Astronomy and Astro-
physics at the University of Chicago and at the FERMILAB):
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(...) As you know, I had the opportunity of attending the 4th and 5th
Schools as a lecturer. I cannot express the student’s view, but from my
perspective they were both great successes. I benefited a great deal from
the lectures by the many distinguished scientists and from questions and
discussions with students. CBPFs Gravitation and Cosmology Group is
large and active. The people already present at CBPF could easily serve as
a nucleus for a more ambitious program. An Institute with a larger scope
would be beneficial to Brazilian science in two ways: It would attract
to Rio the best people in the international scientific community to share
recent developments in general relativity and cosmology; and it would
afford the opportunity for the rest of the world to learn about the great
work done in Rio by Brazilian scientists. I can think of no better use of
resources available to help the development of science in Brazil. I would
be happy to do anything I can to help your initiative. Good luck with
your efforts.

• VITORIO CANUTO (31/10/1988) (Member of NASA, Goddard Institute
for Space Studies):

(...) In all of Latin America, Brazil is the country that, thanks to your
efforts, has taken the leadership in the field of General Relativity and
Cosmology, as witnessed by the success of the several Schools that you
have convened in the last ten years. From both the scientific and the
organizational points of views, I believe they were a remarkable success.
Cosmology is about to be reborn thanks to launching the Space Telescope
next year. The wealth of new data available in the near future will dra-
matically change the field, and the fact that your Schools have already
prepared young researchers in this field represents an investment on which
this Institute can confidently be built. For these reasons, I firmly believe
that an Institute of Research in Cosmology and Gravitation will be an
outstanding Brazilian contribution not only to the development of science
in Latin America but to future generations of young scientists. As can
be seen from the excerpts above, even back then the Brazilian Schools of
Cosmology and Gravitation already had aninternationally recognizedtra-
dition of providing young researchers and students with easy access, and
as thorough as possible, to the current state of research in some sectors of
Cosmology, Gravitation, Astrophysics, and related areas. The following
passages have been taken from scientists who participated in the Schools
of Cosmology and Gravitation at different times.

• BAHRAN MASSHOOM (Missouri, EUA), 1993:

The organization of the School was excellent: a rigorous schedule of lec-
tures combined with evening seminars. There was ample time, however, to
get to know the participants and to have lengthy discussions of scientific
issues of mutual interest that arose in the course of lectures and seminars.
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(...) On the administrative side, I can only have high praise for the pro-
fessionalism and dedication of the staff combined with a pleasant human
touch that added warmth to the atmosphere of the School. The quality
of the School was outstanding. I was also impressed with the excellent
quality of graduate students at the School.

• BERNARD JONES (Copenhagen, Denmark), 1993:

The organization of the School was in fact one of the best I have ever
encountered. In fact, it was so good I never noticed it, since everything
seemed to work like clockwork and, most important, the organizing team
exhibited a remarkable degree of flexibility. You, evidently, have the or-
ganization of this kind of meeting down to an art-form. I made many
contacts among the young people at the School and I am currently look-
ing into the question of partially financing a bi-lateral cooperation on the
subjects of mutual interest. I have contacted our Ministry of Education
and will see other relevant groups over the next couple of months. I am
hopeful we will be able to invite people to spend some time here.

• VITALYMELNIKOV (Head of CSVRs Department of Fundamental Inter-
action and Metrology; President of the Russian Gravitational Association,
Moscow, Russia), 1993:

The scientific level of the VII Brazilian School of Cosmology and Gravita-
tion was on a good international level. Practically all modern problems on
cosmology and gravitation were discussed at the School. Lecturers were
renowned scientists from Europe, USA, and Brazil. It is very nice that
among lecturers were some scientists representing Russian schools in ba-
sic sciences: Prof. A.Dolgov, I.Tyutin (seminar), Gitman (seminar), and
myself. It may contribute to further cooperation and interaction between
Brazilian and Russian basic sciences in the field of cosmology and grav-
itation. There were interesting discussions on the cosmological constant
problem and inflationary models, as well as discussions concerning each
lecture. The fact that nearly all the Brazilian groups were represented at
the School and also many scientists from Argentine, Mexico, other Latin
American countries, and even some people from Europe makes this School
in essence an international one. The scientific organization of the School
was excellent: strict time-table, full attendance, copying of the lectures,
work of secretaries, conditions to work, discussions, etc. The fact that all
participants lived in one compact and nearly isolated place is very good
for productive interaction between all the participants and lecturers. I
should like to note that it is a very good practice that all participants
had their accommodations paid for by the Organizing Committee, where
the scientific merit was the only reason for choosing the attendants. It is
the same practice that is used in many other renowned schools like Les
Houches, in France, Erice, in Italy, etc. Especially I should like to stress
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the great role of Prof. Mrio Novello in the preparation and organization
of the work of the School. Due to his attitude, the atmosphere was very
friendly and creative. Conditions of living and meals were also good. As
to suggestions for future schools I should like to point out that some top-
ics may be represented more widely like quantum cosmology and quantum
gravity and also experimental problems of gravitation. In general, I think
the traditional interaction of Brazilian and Russian scientists in cosmology
and gravitation should be kept and enhanced. And, of course, the best
traditions of the Brazilian School of Cosmology and Gravitation, which
already were present at the VII School, must be kept.

• A.DOLGOV (Theoretical Astrophyiscs Center - TAC, Copenhagen, Den-
mark), 1998:

The Brazilian Schools of Cosmology and Gravitation already have a long
and glorious history. They started 20 years ago and, ever since, remain
as one of the leading schools on the subject, not only in Brazil but in
the world. It is difficult to overstate their educational and scientific value.
The level of lecturers is always first rate. The scientific programs each year
contain most interesting, important, and up-to-date subjects. In parallel
to the main courses of lectures, more brief scientific seminars are organized,
where original works by the local and visiting physicists are presented.
This makes the Schools not only educationally important but also plays
an essential role in the recognition of Brazilian scientific achievements. I
would also like to stress the great, excellent, and difficult work done by
Professor M.Novello in organizing these Schools.

• IGORNOVIKOV (Director, Theoretical Astrophysics Center, Copenhagen,
Denmark), 1998: I am writing in connection with the great tradition of
Brazilian physicists: a series of scientific meetings called the Brazilian
Schools of Cosmology and Gravitation (BSCG). (...) The BSCG have
taken place approximately every two years starting from 1978. In this year
of 1998, the IX BSCG was held in which I had the privilege to participate
as an invited lecturer. The main goals of the Schools are to provide the
possibility to present and discuss the new achievements in cosmology, gen-
eral theory of relativity, astrophysics, quantum field theory and in related
areas. I have learned these Schools from my colleagues and from Proceed-
ings of the Schools for many years. This year as a participant of the IX
BSCG I personally observed the highest scientific and organizational level
of the School. The unique format of the BSCG and very friendly working
atmosphere provided many fruitful discussions both in pure science and in
scientific education. It leads to a real progress in physics and is especially
important and competitive at a world class level, and the list of lecturers
at BSCG is a who’s who of the leaders of cosmology and physics of the
international level. I believe that the outstanding BSCG is the result of
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enormous work of the talented organizers of the School under the leader-
ship of the Head of BSCG, Prof. M.Novello. It would be very important
both for Brazilian physics and for the world physics community to continue
the Brazilian Schools of Cosmology and Gravitation in the future.

• EDWARD W. KOLB (Theoretical Astrophysics, FERMILAB; The Uni-
versity of Chicago, EUA), 1998:

I have had the pleasure of attending two of the Brazilian Schools of Cos-
mology and Gravitation. In addition to an enthusiastic audience for my
lectures, I learned a great deal from the other fine lectures at the Schools.
The Schools were exceptionally well run and well balanced. I believe that
the Schools have had many benefits for Brazilian science. Not only are
the students exposed to ideas and research of leading scientists from the
entire world, but scientific leaders from throughout the world are exposed
to the very fine young Brazilian researchers. There are many talented
young scientists who would otherwise not be easily noticed outside Brazil.
Because of the contacts made during my visits to Brazil to attend the
Schools, several young scientists have been invited to spend long periods
visiting our group at Fermi National Accelerator Laboratory. I am sure
that we benefitted from their visits, and I believe that they benefitted
from visiting us as well. Nowadays it is difficult to provide continuity even
to successful projects. In spite of difficulties you may face, I would like
to encourage you to do whatever it takes to continue with the Brazilian
Schools of Cosmology and Gravitation. The benefits of the School are
quite considerable.

• J. NARLIKAR (Inter-University Centre for Astronomy and Astrophysics
- IUCAA, India), 1998:

I am writing this letter to give my impressions on the Schools of Cosmology
and Gravitation conducted by your group in Brazil over the last 20 years.
I recall participating in one of the schools in 1987 as a resource person.
It was indeed an exhilarating experience to meet the students who were
attracted not only from Brazil but also from other countries. The resource
persons were also from many different countries and enjoyed international
reputation. The School which I attended and lectured in certainly ?????
went a long way in bringing to the student community the latest ideas in
cosmology and astrophysics. Knowing that many of the students would
normally miss the lectures that are routinely delivered in schools held in
Europe or the United States, I think the BSCG is playing a very vital role
in this field. I do hope that you will continue this activity and possibly
expand upon it if your funding agency so permits. You have established
a tradition which has to be continued, and I hope that it will.

• FANG LI-ZHI (University of Arizona, Tucson, USA), 1998:
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(...) Gravitational theory and cosmology are two of the most fundamental
fields of physics. It could not exist without strong public support. How-
ever, given the small number of researchers in gravitation and cosmology,
these fields make unexpectedly large contributions to formal and informal
science education. In the current world, more and more countries recog-
nize that the synergistic, educational, and cultural contributions of the
study of cosmology and gravitation are worthy. Therefore, not only big
and rich countries attach importance to these fields, but also many others.
For instance, even under the current Asian financial crisis, the programs
of cosmological and gravitational research in Korea, Vietnam, and Taiwan
have firmly been funded by their own authorities. I had the honor to be
invited as a lecturer at the BSCG in 1984. Since then I have kept in touch
with colleagues of the BSCG. I would like to evaluate the BSCG to be
the first rank of schools in the field. All lecturers are influential, and all
lectures delivered at the BSCG are on the frontier of gravitation and cos-
mology research. In addition, the BSCG provides unusual opportunities
for international exchange and cooperation of colleagues from Brazil and
Latin America with the rest of the world. Therefore, I strongly recom-
mend support to the BSCG School, and its activity should be regular and
permanent.

• G.F.R.ELLIS (University of Cape Town, Department of Mathematics and
Applied Mathematics, South Africa ), 1998:

This letter is to state that the series of scientific meetings called the Brazil-
ian Schools of Cosmology and Gravitation (BSCG) have been a significant
series of meetings, pulling together high quality lecturers from around the
world, and resulting from time to time in good quality publications of sig-
nificant merit. I therefore believe that continuation of these schools on a
regular basis will be a very worthwhile project, and will make a significant
contribution to the development of relativity and cosmology not merely
to Brazil, but in the whole of Latin America. I am therefore pleased to
support your request that funding for these schools should be continued.

• VLADIMIR MOSTEPANENKO (A.Friedmann Laboratory for Theoreti-
cal Physics, Moscow, Russia; Visiting Professor, UFPb, Joo Pessoa), 1998:

Let me express my gratitude for your kind invitation to take part in the
IX Brazilian School of Cosmology and Gravitation and to give the lectures
there. The School of Cosmology and Gravitation has become a traditional
event in Brazil. During twenty years it has gathered the most qualified
lecturers on the subject from all over the world and the most promising
young Brazilian researchers working in the field of cosmology and gravi-
tation. It is a great honor to Brazil that this country considers it possible
to support this field of fundamental physics research. Giving seemingly
small contribution to technologies, Cosmology and Gravitation investigate
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and solve the most profound problems of the structure and evolution of
our Universe. These problems have attracted the most prominent sci-
entists from different countries during all the history of mankind. Now
both Gravitation and Cosmology are the experimentally based exact sci-
ences with great perspectives. I hope that the tradition of the Brazilian
Schools of Cosmology and Gravitation will be prolonged giving significant
contribution to education and science in Brazil.

• YVONNE CHOQUET-BRUHAT (Universit Pierre et Marie Curie, Grav-
itation et Cosmologie Relativistes, Paris, France), 1998:

The Brazilian School of Cosmology and Gravitation has held regular meet-
ings - or rather summer schools - since 1978. The list of speakers at these
schools is an impressive assembly of internationally renowned names of
specialists covering the broad area of General Relativity and Cosmology.
I myself have been fortunate enough to participate in two of these schools.
I have learned greatly from the lectures of colleagues working in fields
distinct but related to mine (which is mainly mathematical problems in
General Relativity). The school was also attended by a member of grad-
uate students. The solid background as well as the advanced view points
that they received there was certainly a great asset for their future. The
Brazilian School of Cosmology and Gravitation has an international repu-
tation, enhanced and perpetuated by the volumes of its proceedings. This
school totally deserves to be supported.
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G. Non linear Electrodynamics

M. NOVELLO, J M SALIM AND S E P BERGLIAFFA

G.1. Introduction

In recent years, there has been a growing interest in models that mimic in the
laboratory some features of gravitation. The actual realization of these models
relies on systems that are very different in nature: ordinary non-viscous fluids,
super-fluids, flowing and non-flowing dielectrics, non-linear electromagnetism in
vacuum, and Bose-Einstein condensates. The basic feature shared by these sys-
tems is that the behavior of the fluctuations around a background solution is
governed by an “effective metric”. More precisely, the particles associated to
the perturbations do not follow geodesics of the background space-time but of
a Lorentzian geometry described by the effective metric, which depends on the
background solution. It is important to notice that only some kinematical as-
pects of general relativity can be imitated by this method, but not its dynamical
features.

By use of this analogy, the geometrical tools of General Relativity can be
used to study some condensed matter systems. More importantly perhaps is
the fact that the analogy has permitted the simulation of several configurations
of the gravitational field, such as wormholes and closed space-like curves for
photons, and warped spacetimes for phonons. Particular attention has been
paid to analog black holes, because these would emit Hawking radiation exactly
as the gravitational black holes do, and are obviously much easier to generate
in the laboratory. The fact that analog black holes emit thermal radiation was
shown first by Unruh in the case of dumb black holes, and it is the prospect of
observing this radiation (thus testing the hypothesis that the thermal emission
is independent of the physics at arbitrarily short wavelengths) that motivates
the quest for a realization of analog black holes in the laboratory. Let us em-
phasize that the actual observation of the radiation is a difficult task from the
point of view of the experiment, if only because of the extremely low temper-
atures involved. In the case of a quasi one-dimensional flow of a Bose-Einstein
condensate for instance, the temperature of the radiation would be around 70
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nK, which is comparable but lower than the temperature needed form the con-
densate.

We shall begin by presenting the basics of the idea of the effective geometry by
studying a simple case: nonlinear electromagnetism. Later on we shall analyze
another example: photons in a flowing dielectric medium. We shall see that, in
analogy to the most general nonlinear electromagnetic case, the photons expe-
rience bi-refringence and bi-metricity. Then we show that is possible to build
a static and spherically symmetric analog black hole, generated by a flowing
isotropic dielectric that depends on an applied electric field. We give a specific
example, in which the radius of the horizon and the temperature depend on
three parameters (the zeroth order permittivity, the charge that generates the
external field, and the linear susceptibility) instead of depending only on the
zeroth order permittivity. As we shall show another feature of this black hole is
that there is a new term in the surface gravity (and hence in the temperature of
Hawking radiation), in addition to the usual term proportional to the accelera-
tion of the fluid. This new term depends exclusively on the dielectric properties
of the fluid, and it might give an opportunity to get Hawking radiation with
temperature higher than that reported up to date.

G.2. The effective metric

Historically, the first example of the idea of effective metric was presented by
W. Gordon in 1923. In modern language, the wave equation for the propagation
of light in a moving nondispersive medium, with slowly varying refractive index
n and 4-velocity uµ:

[
∂α∂

α + (n2 − 1)(uα∂α)
2
]
Fµν = 0.

Taking the geometrical optics limit, the Hamilton-Jacobi equation for light rays
can be written as gµνkµkν = 0 where

gµν = ηµν + (n2 − 1)uµuν (G.1)

is the effective metric for this problem. It must be noted that only photons in
the geometric optics approximation move on geodesics of gµν : the particles that
compose the fluid couple instead to the background Minkowskian metric.
Let us study now in detail the example of nonlinear electromagnetism. We

start with the action

S =

∫ √−γ L(F ) d4x, (G.2)

where F ≡ F µνFµν and L is an arbitrary function of F . Notice that γ is the
determinant of the background metric, which we take in the following to be that
of flat spacetime, but the same techniques can be applied when the background
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is curved. Varying this action w.r.t. the potential Aµ, related to the field by
the expression

Fµν = Aµ;ν − Aν;µ = Aµ,ν − Aν,µ,
we obtain the Euler-Lagrange equations of motion (EOM)

(
√−γ LFF µν);ν = 0, (G.3)

where LF is the functional derivative LF ≡ δL
δF
. In the particular case of a

linear dependence of the Lagrangian with the invariant F we recover Maxwell’s
equations of motion.
As mentioned in the Introduction, we want to study the behavior of pertur-

bations of these EOM around a fixed background solution. Instead of using
the traditional perturbation method, we shall use a more elegant method set
out by Hadamard. In this method, the propagation of low-energy photons are
studied by following the evolution of the wave front, through which the field is
continuous but its first derivative is not. To be specific, let Σ be the surface of
discontinuity defined by the equation

Σ(xµ) = constant.

The discontinuity of a function J through the surface Σ will be represented by
[J ]Σ, and its definition is

[J ]Σ ≡ lim
δ→0+

(
J |Σ+δ − J |Σ−δ

)
.

The discontinuities of the field and its first derivative are given by

[Fµν ]Σ = 0, [Fµν,λ]Σ = fµνkλ, (G.4)

where the vector kλ is nothing but the normal to the surface Σ, that is, kλ = Σ,λ.
To set the stage for the nonlinear case, let us first discuss the propagation

in Maxwell’s electrodynamics, for which LFF = 0. The EOM then reduces to
F µν
;ν = 0, and taking the discontinuity we get

fµνkν = 0. (G.5)

The other Maxwell equation is given by F ∗
µν

;ν = 0 or equivalently,

Fµν;λ + Fνλ;µ + Fλµ;ν = 0. (G.6)

The discontinuity of this equation yields

fµνkλ + fνλkµ + fλµkν = 0. (G.7)

Multiplying this equation by kλ gives

fµνk
2 + fνλk

λkµ + fλµk
λkν = 0, (G.8)
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where k2 ≡ kµkνγ
µν . Using the orthogonality condition from previous equation

it follows that
fµνk2 = 0 (G.9)

Since the tensor associated to the discontinuity cannot vanish (we are assuming
that there is a true discontinuity!) we conclude that the surface of discontinuity
is null w.r.t. the metric γµν . That is,

kµkνγ
µν = 0. (G.10)

It follows that kλ;µk
λ = 0, and since the vector of discontinuity is a gradient,

kµ;λk
λ = 0. (G.11)

This shows that the propagation of discontinuities of the electromagnetic field,
in the case of Maxwell’s equations (which are linear), is along the null geodesics
of the Minkowski background metric.

Let us apply the same technique to the case of a nonlinear Lagrangian for the
electromagnetic field, given by L(F ). Taking the discontinuity of the EOM, we
get

LFf
µνkν + 2η LFF F

µνkν = 0, (G.12)

where we defined the quantity η by F αβfαβ ≡ η. Note that contrary to the linear
case in which the discontinuity tensor fµν is orthogonal to the propagation
vector kµ, here there is a complicated relation between the vector fµνkν and
quantities dependent on the background field. This is the origin of a more
involved expression for the evolution of the discontinuity vector, as we shall see
next. Multiplying equation (G.8) by F µν we obtain

η k2 + F µνfνλk
λkµ + F µνfλµk

λkν = 0. (G.13)

Now we substitute in this equation the term fµνkν from Eqn.(G.12), and we
arrive at the expression

ηk2 − 2
LFF
LF

η(F µλkµkλ − F λµkµkλ), (G.14)

which can be written as gµνkµkν = 0, where

gµν = LFγ
µν − 4LFF F

µαFα
ν . (G.15)

We then conclude that

The low-energy photons of a nonlinear theory of electrodynamics
with L = L(F ) do not propagate on the null cones of the back-
ground metric but on the null cones of an effectivemetric, generated
by the self-interaction of the electromagnetic field.
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This statement is always true in case of Lagrangians depending only of the
invariant F . For Lagrangians that depend also of F ∗, there may be some special
cases in which the propagation coincides with that in Minkowski. Another
feature of the more general case L = L(F, F ∗) is that bi-refringence is present.
That is, the two polarization states of the photon propagate in a different way.
In some special cases, there is also bi-metricity (one effective metric for each
state). Even more special cases (such as Born-Infeld electrodynamics) exhibit
only a single metric. Some of these features are present in our next example.

G.3. Effective metric in flowing fluids with zero

vorticity

Another example in which an effective metric arises naturally is that of fluid dy-
namics for inviscid fluids. The equations decribing this system are the continuity
equation,

∂tρ+ ~∇.(ρ~v) = 0

and Euler’s equation,

ρ(∂t~v + (~v.~∇)~v) = −~∇p−−ρ~∇Φ.

If we assume that assuming that there is no vorticty, the velocity of the fluid
can be expressed in terms of a potential:

~v = −~∇ψ.

If we also assume that the fluid is barotropic, that is

~∇h =
1

ρ
~∇p,

Euler eqn. reduces to

−∂tψ + h +
1

2
(~∇ψ)2 + ψ + Φ = 0 (G.16)

Linearize the EOM around some assumed background using

ρ = ρ0 + ǫρ1 +O(ǫ2)

and similar developments for p and ψ1 (the background quantities have a 0
subindex).
Keeping up to first order in ǫ, we get from the linearized EOM:

−∂t
(
∂ρ

∂p
ρ0(∂tψ1 + ~v0.~∇ψ1)

)
+ ~∇.

(
ρ0 ~∇ψ1−

∂ρ

∂p
ρ0 ~v0(∂tψ1 + ~v0.~∇ψ1)

)
= 0
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Introducing the velocity of sound c−2
s = ∂ρ

∂p
, and the metric

gµν =
ρ0
cs



−(c2s − v20)

... −vj0
. . . . . . .

−vj0
... δij




We can write the wave equation

△ψ1 = 0, (G.17)

where △ is the d’Alembertian in the geometry gµν :

△ψ1 =
1√−g∂µ(

√−g gµν∂νψ1), (G.18)

The scalar field ψ1 moves in an effective curved spacetime, in which the ge-
ometry depends on the background fluid.
Many of the notions of GR (like horizon and ergosphere) can be applied in

this context. In particular, it is rather easy to generate an analog black hole
in this model, and it can be shown that this analog black hole emits Hawking
radiation.

G.3.1. Effective metric(s) in the presence of a dielectric

We now move to another interesting case where the effective geometry is useful
to study the motion of low-energy photons. We shall analyze the propagation
of such photons in a nonlinear medium. Let us define first the antisymmetric
tensors Fµν and Pµν , which are convenient to represent the electromagnetic field
when material media are present. These tensors can be expressed in terms of
the strengths (E, H) and the excitations (D, B) of the electric and magnetic
fields as

Fµν = vµEν − vνEµ − ηµναβvαBβ,
Pµν = vµDν − vνDµ − ηµναβvαHβ.

where vµ represents the 4-velocity of an arbitrary observer (which we will take
later as co-moving with the fluid). The Levi-Civita tensor introduced above is
defined in such way that η0123 = +1 in Cartesian coordinates. Since the electric
and magnetic fields are space-like vectors, the notation EαEα ≡ −E2, HαHα ≡
−H2 will be used. We will consider here media with properties determined only
by the tensors ǫαβ and µαβ (i.e. media with null magneto-electric tensor), which
relate the electromagnetic excitations to the field strengths by the constitutive
laws,

Dα = ǫα
β(E,H)Eβ, Bα = µα

β(E,H)Hβ. (G.19)

In order to get the effective metric, we shall use Hadamard’s method as in the
previous section. By taking the discontinuity of the field equations ∗F µν

;ν = 0
and P µν

;ν = 0, and assuming that

ǫµβ = ǫ(E)(γµβ − vµvβ), (G.20)
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and
µµβ = µ0(γ

µβ − vµvβ), (G.21)

with µ0 = const., we get the following equations:

ǫ(k.e)− ǫ′

E
(E.e)(k.E) = 0, (G.22)

µ0(k.h) = 0, (G.23)

ǫ(k.v)eµ − ǫ′

E
Eαeα(k.v)E

µ + ηµναβkνvαhβ = 0, (G.24)

µ0(k.v)h
µ − ηµναβkνvαeβ = 0, (G.25)

where kµ is the wave propagation vector, ǫ′ is the derivative of ǫ w.r.t. E, and

[Eµ,λ]Σ = eµ kλ, [Hµ,λ]Σ = hµ kλ.

Note in particular that previous equation shows that the vectors kµ and eµ are
not always orthogonal, as would be the case if ǫ′ was zero. Substituting in the
previous equation, we get

Zµβeβ = 0, (G.26)

where the matrix Z is given by

Zµβ =
[
k2 + (k.v)2(µ0ǫ− 1)

]
γµβ−µ0

ǫ′

E
(k.v)2EµEβ+(v.k)(vµkβ+kµvβ)−

[
ǫµ0(k.v) + k2

]
vµvβ−kµ

(G.27)
Non-trivial solutions can be found only for cases in which det

∣∣Zµβ
∣∣ = 0 ( this

condition is a generalization of the well-known Fresnel equation).

This equation can be solved by expanding eν as a linear combination of the
four linearly independent vectors vν , Eν , kν and ηαβµνv

αEβkµ (the particular
case in which the vectors vν , Eν and kν are coplanar will be examined below).
That is,

eν = αEν + βηαλµνv
αEλkµ + γkν + δvν . (G.28)

Notice that taking the discontinuity of Eµ
,λ we can show that (e.v) = 0. This

restriction imposes a relation between the coefficients of Eqn.(G.28):

δ = −γ(k.v)

With the expression given in Eqn.(G.28), Eqn. (G.26) reads

α
[
k2 − (1− µ0 (ǫ E)

′) (k.v)2
]
− γ

[
µ0(k.v)

2 1

E
ǫ′αkα

]
= 0,

αEµkµ + γ(1− µ0ǫ)(k.v)
2 + δ(k.v) = 0,

α(k.v)Eµkµ + γ(k.v)k2 + δ
[
k2 + µ0ǫ (k.v)

2
]
= 0,

β
[
k2 − (1− µ0ǫ)(k.v)

2
]
= 0.
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The solution of this system results in the following dispersion relations:

k2− = (k.v)2 [1− µ0(ǫ E)
′] +

1

ǫE
ǫ′αEβkαkβ, (G.29)

k2+ = [1− µ0ǫ(E)](k.v)
2. (G.30)

They correspond to the propagation modes

e−ν = ρ−
{
µ0 ǫ(k.v)

2Eν + Eαkα[kν − (k.v)vν ]
}
, (G.31)

e+ν = ρ+ ηαλµνv
αEλkµ, (G.32)

where ρ− and ρ+ are arbitrary constants. The labels “+” and “−” refer to the
ordinary and extraordinary rays, respectively. Eqns. that govern the propaga-
tion of photons in the medium characterized by µ = µ0 =const., and ǫ = ǫ(E).
They can be rewritten as gµν± kµkν = 0, where we have defined the effective
geometries

gµν(−) = γµν − [1− µ0 (ǫ E)
′] vµvν − 1

ǫE
ǫ′µEν , (G.33)

gµν(+) = γµν − [1− µ0 ǫ]v
µvν. (G.34)

The metric given above was derived previously, while the second metric very
much resembles the metric derived by Gordon. The difference is that in the
case under consideration, ǫ is a function of the modulus of the external electric
field, while Gordon worked with a constant permeability.
We see then that in this example each polarization state has its own dispersion

relation, so there is bi-refringence. There is also bi-metricity, because each type
of photon moves according a different metric.
Let us discuss now a particular instance in which the vectors used as a basis

in previous Eqn. are not linearly independent. If we assume that

Eµ = akµ + bvµ, (G.35)

then vectors eµ, kµ, and vµ are coplanar. In this case, the basis chosen is not
appropriate. Notice however that if we assume that eµ is a combination of
vectors that are perpendicular to kµ, so that (e.k) = 0, then (E.e) = 0. The
converse is also true: if (E.e) = 0, then (k.e) = 0. For this particular case, in
which eµ is perpendicular to vµ, kµ (and consequently to Eµ), imply that

[
k2 + (k.v)2(µ0ǫ− 1)

]
eµ = 0

We see then that in the case in which Eµ = akµ+ bvµ, Fresnel’s equation deter-
mines that the polarization of the photons is perpendicular to the direction of
propagation and to the velocity of the fluid. Moreover, the motion of these pho-
tons is governed by the metric gµν+ . For instance, if the electric field, the velocity
of the fluid, and the direction of propagation are all radial, then the polariza-
tion is in the plane perpendicular to the propagation, and the two polarization
modes feel the same geometry.
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G.4. The Analog Black Hole

We shall show in this section that the system described by the effective metrics
given above can be used to produce an analog black hole. It will be convenient to
rewrite at this point the inverse of the effective metric using a different notation:

g(−)
µν = γµν −

vµvν
c2

(1− f) + ξ

1 + ξ
lµlν , (G.36)

where we have defined the quantities

f ≡ 1

c2µ0ǫ(1 + ξ)
, ξ ≡ ǫ′E

ǫ
, lµ ≡

Eµ
E
.

Note that ǫ = ǫ(E). We have introduced here the velocity of light c, which was
set to 1 before. Taking a Minkowskian background in spherical coordinates, and

vµ = (v0, v1, 0, 0), Eµ = (E0, E1, 0, 0), (G.37)

we get for the effective metric,

g
(−)
00 = 1− v20

c2
(1− f) + ξ

1 + ξ
l20, (G.38)

g
(−)
11 = −1− v21

c2
(1− f) + ξ

1 + ξ
l21, (G.39)

g
(−)
01 = −v0v1

c2
(1− f) + ξ

1 + ξ
l0 l1, (G.40)

and g
(−)
22 and g

(−)
33 as in Minkowski spacetime. The vectors vµ and lµ satisfy the

constraints
v20 − v21 = c2, (G.41)

l20 − l21 = −1, (G.42)

v0l0 − v1l1 = 0. (G.43)

This system of equations can be solved in terms of v1, and the result is

v20 = c2 + v21 , (G.44)

l20 =
v21
c2
, l21 =

c2 + v21
c2

. (G.45)

Now we can rewrite the metric in terms of β ≡ v1/c, a definition which
coincides with the usual one for small values of v1. The explicit expression of
the metric coefficients is:

g
(−)
00 =

1− β2(c2µ0ǫ− 1)

c2µ0(ǫ+ ǫ′E)
, (G.46)
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g
(−)
01 = β

√
1 + β2

1− c2µ0ǫ

c2µ0(ǫ+ ǫ′E)
, (G.47)

g
(−)
11 =

β2 − c2µ0ǫ(1 + β2)

c2µ0(ǫ+ ǫ′E)
. (G.48)

¿From Eqn.(G.46) it is easily seen that, depending on the function ǫ(E), this
metric has a horizon at r = rh, given by the condition g00(rh) = 0 or, equiva-
lently, (

c2µ0ǫ−
1

β2

) ∣∣∣∣
rh

= 1. (G.49)

The metric given above resembles the form of Schwarzschild’s solution in
Painlevé-Gullstrand coordinates:

ds2 =

(
1− 2GM

r

)
dt2 ± 2

√
2GM

r
dr dt− dr2 − r2dΩ2. (G.50)

With the coordinate transformation

dtP = dtS ∓
√
2GM/r

1− 2GM
r

dr, (G.51)

the line element given in above equation can be written in Schwarzschild’s coor-
dinates. The “+” sign covers the future horizon and the black hole singularity.
The effective metric looks like the metric in Eqn.(G.50). In fact, it can be

written in Schwarzschild’s coordinates, with the coordinate change

dtPG = dtS −
g01(r)

g00(r)
dr. (G.52)

Using this transformation with the metric coefficients given in Eqns.(G.46) and

(G.47), we get the expression of g
(−)
11 in Schwarzschild coordinates:

g
(−)
11 = − ǫ(E)

(1− β2[c2µ0ǫ(E)− 1])(ǫ(E) + ǫ(E)′E)
. (G.53)

Note that g
(−)
01 is zero in the new coordinate system, while g

(−)
00 is still given by

Eqn.(G.46). Consequently, the position of the horizon does not change, and is
still given by Eqn.(G.49).

Working in Painlevé-Gullstrand coordinates, we have shown that the metric
for the “−” polarization describes a Schwarzschild black hole if Eqn.(G.49) has
a solution. Afterwards we have rewritten the “−” metric in the more familiar
Schwarzschild coordinates. Let us consider now photons with the other po-
larization. They “see” the metric given by Eqn.(G.34), whose inverse is given
by:

g(+)
µν = γµν −

vµvν
c2

(
1− 1

c2µ0ǫ(E)

)
. (G.54)
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Using this equation and Eqns.(G.44) and (G.45) it is straightforward to show
that

g
(+)
00 = 1−

(
1 + β2

)(
1− 1

c2µ0ǫ(E)

)
, (G.55)

g
(+)
01 = −β

√
1 + β2

(
1− 1

c2µ0ǫ(E)

)
, (G.56)

g
(+)
11 = −1− β2

(
1− 1

c2µ0ǫ(E)

)
. (G.57)

This metric also corresponds to a Schwarzschild black hole, for some ǫ(E) and
β. Comparing Eqns.(G.46) and (G.55) we see that the horizon of both analog
black holes is located at rh, given by Eqn.(G.49).
By means of the coordinate change defined by Eqn.(G.52), we can write this

metric in Schwarzschild’s coordinates. The relevant coefficients are given by

g
(+)
00 =

1 + β2(1− c2µ0ǫ(E))

c2µ0ǫ(E)
, (G.58)

g
(+)
11 = − 1

1 + β2(1− c2µ0ǫ(E))
. (G.59)

It is important to stress then that the horizon is located at rh given by
Eqn.(G.49) for photons with any polarization. Moreover, the motion of the
photons in both geometries will be qualitatively the same, as we shall show
below.

G.5. An example

We have not specified up to now the functions ǫ(E) and E(r) that determine
the dependence of the coefficients of the effective metrics with the coordinate r.
From now on we assume a linear ǫ(E), a type of behaviour which is exhibited
for instance by electrorheological fluids. Specifically, we take

ǫ(E) = ǫ0(χ+ χ(2)E(r)), (G.60)

with χ = 1 + χ(1). The nontrivial Maxwell’s equation then reads

(√−γ ǫ(r)F 01
)
,1
= 0. (G.61)

Taking into account that (F 01)2 = E2

c2
, we get as a solution of Eqn.(G.61) for a

point source in a flat background in spherical coordinates

F 01 =
−χ±

√
χ2 + 4χ(2)Q/ǫ0r2

2cχ(2)
. (G.62)
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Let us consider a particular combination of parameters: χ(2) > 0, Q > 0 and
the “+” sign in front of the square root in F 01, in such a way that E > 0 for all
r. To get more manageable expressions for the metric, it is convenient to define
the function σ(r):

E(r) ≡ χ

2χ(2)
σ(r) (G.63)

where

σ(r) = −1 + 1

r

√
r2 + q (G.64)

and

q =
4χ(2)Q

ǫ0χ
2 . (G.65)

In terms of σ, the metrics take the form

ds2(−) =
2− β2 [ χ (σ(r) + 2)− 2]

2 χ (1 + σ(r))
dτ 2−

2 + σ(r)

[2− β2 (χ (σ(r) + 2)− 2)] (1 + σ(r))
dr2 − r2dΩ2, (G.66)

ds2(+) =
2− β2 [ χ (σ(r) + 2)− 2]

χ (2 + σ(r))
dτ 2−

2

2 + β2 [2− χ (σ(r) + 2)]
dr2 − r2dΩ2. (G.67)

Notice that the (t, r) sectors of these metrics are related by the following
expression:

ds2(+) = Φ(r) ds2(−) (G.68)

where the conformal factor Φ is given by:

Φ = 2
1 + σ(r)

2 + σ(r)

We shall study next some features of the effective black hole metrics. It
is important to remark that up to this point, the velocity of the fluid v1 is
completely arbitrary; it can even be a function of the coordinate r. We shall
assume in the following that v1 is a constant. This assumption, which will be
lifted later on, may seem rather restrictive but it helps to display the main
features of the effective metrics in an easy way.
To study the motion of the photons in these geometries, we can use the

technique of the effective potential. Standard manipulations show that in the
case of a static and spherically symmetric metric, the effective potential is given
by

V (r) = ε2
(
1 +

1

g00(r) g11(r)

)
− L2

r2g11(r)
(G.69)
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where ε is the energy and L the angular momentum of the photon.
In terms of σ(r), and of the impact parameter b2 = L2/ε2, the ”small” ef-

fective potential v(r) ≡ V (r)/ε2 for the metric Eqn.(G.66) in Schwarzschild
coordinates can be written as follows:

v(−)(r) = 1− 2(1 + σ(r))2

2 + σ(r)
− b2

r2
(2− β2σ(r))(1 + σ(r))

2 + σ(r)
(G.70)

A short calculation shows that v(−) is a monotonically decreasing function of β.
b = 1, 3, 5 (starting from the lowest curve), and β = 0.5.
The effective potential for the Gordon-like metric can be obtained in the same

way. From Eqns.(G.69) and (G.67) we get

v(+)(r) = 1− 2 + σ(r)

2
+

b2

2r2
[2− β2σ(r)]. (G.71)

We see that, in the case of a constant flux velocity, the shape of the effective
potential for both metrics qualitatively agrees with that for photons moving on
the geometry of a Schwarzschild black hole.

G.6. Surface gravity and temperature

Let us now go back to the more general case of β = β(r), and calculate the
“surface gravity” of our analog black hole. We present first the results for the
constant permittivity case. By setting ǫ′(E) ≡ 0 in the metrics Eqns.(G.33) and
(G.34), we regain the example of constant index of refraction It is easy to show
that the horizon of the black hole in this case is given by

β2(rh) =
1

χ̄− 1
. (G.72)

The “surface gravity” of a spherically symmetric analog black hole in Schwarszchild
coordinates is given by

κ =
c2

2
lim
r→rh

g00,r√
|g11| g00

. (G.73)

For the metrics Eqns.(G.33) and (G.34) with ǫ = ǫ0χ̄ and rh given by Eqn.(G.72),
the analog surface gravity is

κ = −c
2

2

1− χ̄√
χ̄

(β2)′
∣∣
rh
. (G.74)

This equation can be rewritten in terms of the velocity of light in the medium
and the refraction index, respectively given by

c2m =
1

µ0ǫ
, n =

c

cm
. (G.75)
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The result is

κ =
c2

2

1− n2

n
(β2),r (G.76)

In this expression we can see the influence of the dielectric properties of the
fluid (through the index of refraction of the medium) and also of its dynamics
through the physical acceleration in the radial direction, given by

ar|rh =
c2

2
(β2)′

∣∣
rh
,

for β2(rh)≪ 1. This acceleration is a quantity that must be determined solving
the equations of motion of the fluid 1.
Going back the the more general case of a linear permittivity, described by the

metrics given above and considering that β(rh) ≪ 1, the radius of the horizon
is 2:

r2h =
qχ̄2

4
β4(rh). (G.77)

Using the expressions given above, the result for the surface gravity of the “−”
black hole for β(rh)≪ 1 is

κ(−) =
c2

β

(
1

χ̄
√
q
− 1

2
(β2)′

)∣∣∣∣
rh

. (G.78)

This equation differs from the surface gravity of the case of constant permittiv-
ity (Eqn.(G.74)) by the presence of a new term that does not depend on the
acceleration of the fluid. To see where this new term comes from, we can go
back to the definition of the surface gravity given in Eqn.(G.73), and use the fact
that in the high frequency limit the velocity of light and the index of refraction
in a medium of variable ǫ are still given by Eqn.(G.75), replacing the constant
permittivity by ǫ = ǫ(E). The result is

κ =

(
c2

2

1− n2(E)

n(E)
(β2),r +

n(E)ǫ(E)

ǫ(E) + ǫ(E)′E
(c2m),r

)∣∣∣∣
rh

(G.79)

In this expression, the first term is the generalization of the case ǫ = const.
(compare with Eqn.(G.76)), which mixes the acceleration of the fluid with its
dielectric properties. On the other hand, the second term, which is the new
term displayed in Eqn.(G.78), is related to the radial variation of the velocity
of light in the medium. It is important to point out that the result exhibited in
Eqn.(G.79) is parallel to that of dumb holes: Unruh found in that case that the
surface gravity for constant speed of sound is proportional to the acceleration of
the fluid (as in the first term of Eqn.(G.79)). This was generalized by Visser, who

1If we set β ≡ 0 in Eqns.(G.46)-(G.48), we cease to have a black hole.
2Notice that we cannot take the limit q → 0 in this expression or in any expression in which
this one has been used.
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showed that for a position-dependent velocity of sound a second term appears,
coming from the gradients of the speed of sound, in analogy with the second
term of Eqn.(G.79).
It is easy to show that the these results also apply to the black hole described

by the Gordon-like metric. This is not surprising though, because of the con-
formal relation between the two metrics, given by Eqn.(G.68) .

Let us remark once more that the concept of temperature, and indeed that
of effective geometry is valid in this context only for low-energy photons, i.e.
photons with wavelengths long compared to the intermolecular spacing in the
fluid. For shorter wavelengths, there would be corrections to the propagation
dictated by the effective metric. However, results for other systems (such as
dumb black holes and Bose-Einstein condensates) suggest that the phenomenon
of Hawking radiation is robust (i.e. independent of this ”high-energy” physics).
Consequently, it makes sense to talk about the temperature of the radiation in
these systems.
At first sight it may seem that by choosing an appropriate material and a

convenient value of the charge we could obtain a high value of the temperature
of the radiation, given by

T ≡ ~

2πkBc
κ ≈ 4× 10−21 κ Ks2/m. (G.80)

However, the equation for the surface gravity can be rewritten as 3

κ = c2
(
β

2r
− β,r

)∣∣∣∣
rh

.

We see then that, because β(rh) ≪ 1, the new term appearing in κ is bound
to be very small. In spite of this result, the emergence in the surface gravity of
the term due to the variable velocity of light suggests that it may be worth to
study if some media with nonlinear dependence on an external electromagnetic
field can be used to generate analog black holes whose Hawking radiation could
be measured in laboratory.

3Note that this equation depends on χ(2) through the expression for rh, Eqn.(G.77).
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H. Cosmological effects of non
linear Electrodynamics

M. NOVELLO, ALINE N. ARAUJO and J. M. SALIM

Recent works have shown the important role that Nonlinear Electrodynamics
(NLED) can have in two crucial questions of Cosmology, concerning particular
moments of its evolution for very large and for low-curvature regimes, that is
for very condensed phase and at the period of acceleration. We present here
a a toy model of a complete cosmological scenario in which the main factor
responsible for the geometry is a nonlinear magnetic field which produces a
FRW homogeneous and isotropic geometry. In this scenario we distinguish four
distinct phases: a bouncing period, a radiation era, an acceleration era and a
re-bouncing. It has already been shown that in NLED a strong magnetic field
can overcome the inevitability of a singular region typical of linear Maxwell
theory; on the other extreme situation, that is for very weak magnetic field it
can accelerate the expansion. The present model goes one step further: after
the acceleration phase the universe re-bounces and enter in a collapse era. This
behavior is a manifestation of the invariance under the dual map of the scale
factor a(t) → 1/a(t), a consequence of the corresponding inverse symmetry
of the electromagnetic field (F → 1/F, where F ≡ F µνFµν) of the NLED
theory presented here. Such sequence collapse-bouncing-expansion-acceleration-
re-bouncing-collapse constitutes a basic unitary element for the structure of
the universe that can be repeated indefinitely yielding what we call a Cyclic
Magnetic Universe.

H.1. Introduction

In the last years there has been increasing of interest on the cosmological ef-
fects induced by Nonlinear Electrodynamics (NLED). The main reason for this
is related to the drastic modification NLED provokes in the behavior of the
cosmological geometry in respect to two of the most important questions of
standard cosmology, that is, the initial singularity and the acceleration of the
scale factor. Indeed, NLED provides worthwhile alternatives to solve these two
problems in a unified way, that is without invoking different mechanisms for
each one of them separately. Such economy of hypotheses is certainly welcome.
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The partial analysis of each one of these problems was initiated in previous
paper. Here we will present a description of a new cosmological model.
The most general form for the dynamics of the electromagnetic field, com-

patible with covariance and gauge conservation principles reduces to L = L(F ),
where F ≡ F µνFµν . We do not consider here the other invariant G ≡ F µνF ∗

µν

constructed with the dual since in our scenario the average of the electric field
vanishes in a magnetic universe as we shall see in the next sections. Thus,
the Lagrangian appears as a regular function that can be developed as positive
or negative powers of the invariant F. Positive powers dominate the dynamics
of the gravitational field in the neighborhood of its moment of extremely high
curvatures. Negative powers control the other extreme, that is, in the case of
very weak electromagnetic fields. In this case as it was pointed out previously it
modifies the evolution of the cosmic geometry for large values of the scale fac-
tor, inducing the phenomenon of acceleration of the universe. The arguments
presented by Lemoine make it worth considering that only the averaged mag-
netic field survives in a FRW spatially homogeneous and isotropic geometry.
Such configuration of pure averaged magnetic field combined with the dynamic
equations of General Relativity received the generic name of Magnetic Universe.
The most remarkable property of a Magnetic Universe configuration is the

fact that from the energy conservation law it follows that the dependence on
time of the magnetic field H(t) is the same irrespective of the specific form
of the Lagrangian. This property allows us to obtain the dependence of the
magnetic field on the scale factor, without knowing the particular form of the
Lagrangian L(F ). Indeed, as we will show later on, from the energy-momentum
conservation law it follows that H = H0 a

−2. This dependence is responsible for
the property which states that strong magnetic fields dominates the geometry
for small values of the scale factor; on the other hand, weak fields determines
the evolution of the geometry for latter eras when the radius is big enough to
excite these terms.
In order to combine both effects, here we will analyze a toy model. The sym-

metric behavior of the magnetic field in both extremes – that is for very strong
and very weak regimes – allows the appearance of a repetitive configuration of
the kind exhibited by an eternal cyclic universe.
Negative power of the field in the Lagrangian of the gravitational field was

used by Carroll and others in an attempt to explain the acceleration of the scale
factor of the universe by modification of the dynamics of the gravitational field
by adding to the Einstein-Hilbert action a term that depends on negative power
of the curvature, that is

S =
M2

Pl

2

∫ √−g
(
R− α4

R

)
d4x,

This modification showed not to be a good candidate to describe a local gravita-
tional field. However, as a by-product of such proposal, one could envisage the
possibility to deal with a new symmetry between strong and weak fields. In a

2212



paper by Novello et al, a model assuming this idea was presented and its cosmo-
logical consequences analyzed. In this model, the action for the electromagnetic
field was modified by the addition of a new term, namely

S =

∫ √−g
(
−F

4
+
γ

F

)
d4x. (H.1)

This action yields an accelerated expansion phase for the evolution of the uni-
verse, and correctly describes the electric field of an isolated charge for a suffi-
ciently small value of parameter γ. The acceleration becomes a consequence of
the properties of this dynamics for the situation in which the field is weak.
In another cosmological context, in the strong regime, it has been pointed

out in the literature that NLED can produces a bouncing, altering another
important issue in Cosmology: the singularity problem. In this article we would
like to combine both effects improving the action given in Eqn.(H.1) to discuss
the consequences of NLED for both, weak and strong fields.
It is a well-known fact that under certain assumptions, the standard cosmolog-

ical model unavoidably leads to a singular behavior of the curvature invariants
in what has been termed the Big Bang. This is a highly distressing state of
affairs, because in the presence of a singularity we are obliged to abandon the
rational description of Nature. It may happen that a complete quantum cos-
mology could describe the state of affairs in a very different and more complete
way. For the time being, while such complete quantum theory is not yet known,
one should attempt to explore alternatives that are allowed and that provide
some sort of phenomenological consequences of a more profound theory.
It is tempting then to investigate how NLED can give origin to an unified sce-

nario that not only accelerates the universe for weak fields (latter cosmological
era, for latter times) but that is also capable of avoiding an initial singularity
as a consequence of its properties in the strong regime.
Scenarios that avoid an initial singularity have been intensely studied over

the years. As an example of some latest realizations we can mention the pre-
big-bang universe and the ekpyrotic universe. While these models are based
on deep modifications on conventional physics (assuming the important role of
new entities as scalar fields, string theory or branes) the model we present here
relies instead on the electromagnetic field. The new ingredient that we introduce
concerns the dynamics that is rather different from that of Maxwell in distinct
regimes. Specifically, the Lagrangian we will work with is given by

LT = α2 F 2 − 1

4
F − µ2

F
+
β2

F 2
. (H.2)

The dimensional constants α, β and µ are to be determined by observation. Thus
the complete dynamics of electromagnetic and gravitational fields are governed
by Einstein equations plus LT .
We shall see that in Friedmann-Robertson-Walker (FRW) geometry we can

distinguish four typical eras which generate a basic unity – which we will call
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tetraktys – that repeat indefinitely1. The whole cosmological scenario is con-
trolled by the energy density ρ and the pressure p of the magnetic field. Each
era of the tetraktys is associated with a specific term of the Lagrangian. As we
shall see the conservation of the energy-momentum tensor implies that the field
dependence on the scale factor yields that the invariant F is proportional to
a− 4. This dependence is responsible by the different dominance of each term of
the Lagrangian in different phases. The first term α2F 2 dominates in very early
epochs allowing a bouncing to avoid the presence of a singularity. Let us call
this the bouncing era. The second term is the Maxwell linear action which
dominates in the radiation era. The inverse term µ2/F dominates in the ac-
celeration era. Finally the last term β2/F 2 is responsible for a re-bouncing.
Thus the tetraktys universe can be described in the following way:

• The bouncing era: There exists a collapsing phase that attains a minimum
value for the scale factor aB(t);

• The radiation era: after the bouncing, ρ+3p changes the sign; the universe
stops its acceleration and start expanding with ä < 0;

• The acceleration era: when the 1/F factor dominates the universe enters
an accelerated regime;

• The re-bouncing era: when the term 1/F 2 dominates the acceleration
changes the sign and starts a phase in which ä < 0 once more; the scale
factor attains a maximum and re-bounces starting a new collapsing phase
and entering a bouncing era once more.

This unity of four stages, the tetraktys, constitutes an eternal cyclic configu-
ration that repeats itself indefinitely.
The plan of the article is as follows. In section II we review the Tolman

process of average in order to conciliate the energy distribution of the elec-
tromagnetic field with a spatially isotropic geometry. Section III presents the
notion of the Magnetic Universe and its generic features concerning the dynam-
ics of electromagnetic field generated by a Lagrangian L = L(F ). Section IV
presents the conditions of bouncing and acceleration of a FRW universe in terms
of properties to be satisfied by L. In section V we introduce the notion of inverse
symmetry of the combined electromagnetic and gravitational fields in a cosmo-
logical context. This principle is used to complete the form of the Lagrangian
that guides the combined dynamics of the unique long-range fields yielding a
spatially homogeneous and isotropic nonsingular universe. In sections VI and
VII we present a complete scenario consisting of the four eras: a bouncing, an
expansion with negative acceleration, an accelerated phase and a re-bouncing.

1This term was taken from Pithagoras who represented the unity of the world constituted
by four basic elements by a geometrical figure called tetratkys.

2214



We end with some comments on the form of the scale factor and future de-
velopments. In appendix we present the compatibility of our Lagrangian with
standard Coulomb law and the modifications induced on causal properties of
nonlinear electrodynamics.

H.2. The average procedure and the fluid

representation

The effects of a nonlinear electromagnetic theory in a cosmological setting have
been studied in several articles.
Given a generic gauge-independent Lagrangian L = L(F ), written in terms

of the invariant F ≡ FµνF
µν it follows that the associated energy-momentum

tensor, defined by

Tµν =
2√−γ

δL
√−γ
δγµν

, (H.3)

reduces to
Tµν = −4LF Fµα Fαν − Lgµν . (H.4)

In the standard cosmological scenario the metric structure of space-time is pro-
vided by the FLRW geometry. For compatibility with the cosmological frame-
work, that is, in order that an electromagnetic field can generates a homoge-
neous and isotropic geometry an average procedure must be used. We define
the volumetric spatial average of a quantity X at the time t by

X ≡ lim
V→V0

1

V

∫
X
√−g d3x, (H.5)

where V =
∫ √−g d3x and V0 is a sufficiently large time-dependent three-

volume. In this notation, for the electromagnetic field to act as a source for the
FLRW model we need to impose that

Ei = 0, H i = 0, EiHj = 0, (H.6)

EiEj = −
1

3
E2gij, HiHj = −

1

3
H2gij. (H.7)

With these conditions, the energy-momentum tensor of the EM field associated
to L = L(F ) can be written as that of a perfect fluid,

Tµν = (ρ+ p)vµvν − p gµν , (H.8)

where

ρ = −L− 4LFE
2,

p = L− 4

3
(2H2 −E2)LF , (H.9)

where LF ≡ dL/dF.
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H.3. Magnetic universe

A particularly interesting case occurs when only the average of the magnetic
part does not vanishes and E2 = 0. Such situation has been investigated in
the cosmological framework yielding what has been called magnetic universe.
This should be a real possibility in the case of cosmology, since in the early
universe the electric field is screened by the charged primordial plasma, while
the magnetic field lines are frozen. In spite of this fact, some attention was
devoted to the mathematically interesting case in which E2 = σ2H2 6= 0.
An interesting feature of such magnetic universe comes from the fact that it

can be associated with a four-component non-interacting perfect fluid. Let us
give a brief proof of the statement that in the cosmological context the energy-
content that follows from this theory can be described in terms of a perfect
fluid. We work with the standard form of the FLRW geometry in Gaussian
coordinates provided by (we limit the present analysis to the Euclidean section)

ds2 = dt2 − a(t)2
(
dr2 + r2dΩ2

)
. (H.10)

The expansion factor, θ defined as the divergence of the fluid velocity reduces,
in the present case, to the derivative of logarithm of the scale factor

θ ≡ vµ;µ = 3
ȧ

a
(H.11)

The conservation of the energy-momentum tensor projected in the direction of
the co-moving velocity vµ = δµ0 yields

ρ̇+ (ρ+ p)θ = 0 (H.12)

Using Lagrangian LT in the case of the magnetic universe yields for the density
of energy and pressure given in equations (H.9):

ρ = −α2 F 2 +
1

4
F +

µ2

F
− β2

F 2
(H.13)

p = − 5α2

3
F 2 +

1

12
F − 7µ2

3

1

F
+

11β2

3

1

F 2
(H.14)

Substituting these values in the conservation law, it follows

LF

[
(H2)̇ + 4H2 ȧ

a

]
= 0. (H.15)

where LF ≡ ∂L/∂F.
The important result that follows from this equation is that the dependence

on the specific form of the Lagrangian appears as a multiplicative factor. This
property shows that any Lagrangian L(F ) yields the same dependence of the
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field on the scale factor irrespective of the particular form of the Lagrangian.
Indeed, equation (H.15) yields

H = H0 a
−2. (H.16)

This property implies that for each power F k it is possible to associate a specific
fluid configuration with density of energy ρk and pressure pk in such a way that
the corresponding equation of state is given by

pk =

(
4k

3
− 1

)
ρk. (H.17)

We restrict our analysis in the present paper to the theory provided by a toy-
model described by the Lagrangian

LT = L1 + L2 + L3 + L4

= α2 F 2 − 1

4
F − µ2

F
+

β2

F 2
(H.18)

where α, β, µ are parameters characterizing a concrete specific model. For lat-
ter use we present the corresponding many-fluid component associated to La-
grangian LT .We set for the total density and pressure ρT =

∑
ρi and pT =

∑
pi

where

ρ1 = −α2 F 2 , p1 =
5

3
ρ1

ρ2 =
1

4
F , p2 =

1

3
ρ2

ρ3 =
µ2

F
, p3 = −

7

3
ρ3

ρ4 = −
β2

F 2
, p4 = −

11

3
ρ4. (H.19)

Or, using the dependence of the field on the scale factor equation (H.16),

ρ1 = − 4α2H4
0

1

a8

ρ2 =
H0

2

1

a4

ρ3 =
µ2

2H2
0

a4

ρ4 = −
β2

4H4
0

a8. (H.20)

Let us point out a remarkable property of the combined system of this NLED
generated by LT and Friedman equations of cosmological evolution. A simple
look into the above expressions for the values of the density of energy exhibits
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what could be a possible difficulty of this system in two extreme situations,
that is, when F 2 and 1/F 2 terms dominate, since if the radius of the universe
can attain arbitrary small and/or arbitrary big values, then one should face
the question regarding the positivity of its energy content. However, as we shall
show in the next sections, the combined system of equations of the cosmic metric
and the magnetic field described by General Relativity and NLED, are such that
a beautiful conspiracy occurs in such a way that the negative contributions for
the energy density that came from terms L1 and L4 never overcomes the positive
terms that come from L2 and L3. Before arriving at the undesirable values where
the density of energy could attain negative values, the universe bounces ( for
very large values of the field) and re-bounces (in the other extreme, that is,
for very small values) to precisely avoid this difficulty. This occurs at the limit
value ρB = ρRB = 0, as follows from equation

ρ =
θ2

3
. (H.21)

We emphasize that this is not an extra condition imposed by hand but a direct
consequence of the dynamics described by LT . Indeed, at early stages of the
expansion phase the dynamics is controlled by the approximation Lagrangian
LT ≈ L1,2 = L1 + L2. Then

ρ =
F

4
(1− 4α2 F ).

Using the conservation law (H.12) we conclude that the density of energy will
be always positive since there exists a minimum value of the scale factor given
by a4mim = 8α2H2

o . A similar conspiracy occurs in the other extreme where
we approximate LT ≈ L2,3 = L2 + L3, which shows that the density remains
positive definite, since a(t) remains bound, attaining a maximum in the moment
the universe makes a re-bounce. These extrema occurs precisely at the points
where the total density vanishes. Let us now turn to the generic conditions
needed for the universe to have a bounce and a phase of accelerated expansion.

H.4. Conditions for bouncing and acceleration

H.4.1. Acceleration

¿From Einstein’s equations, the acceleration of the universe is related to its
matter content by

3
ä

a
= −1

2
(ρ+ 3p). (H.22)

In order to have an accelerated universe, matter must satisfy the constraint
(ρ+ 3p) < 0. In terms of the quantities defined in Eqn. (H.9),

ρ+ 3p = 2(L− 4H2LF ). (H.23)
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Hence the constraint (ρ+ 3p) < 0 translates into

LF >
L

4H2
. (H.24)

It follows that any nonlinear electromagnetic theory that satisfies this inequality
yields accelerated expansion. In our present model it follows that terms L2

and L4 produce negative acceleration and L1 and L3 yield inflationary regimes
(ä > 0).
For latter uses we write the value of ρ+ 3p for the case of Lagrangian LT :

ρ+ 3p = −6α2F 2 +
F

2
− 6µ2

F
+

10β2

F 2
.

H.4.2. Bouncing

In order to analyze the conditions for a bouncing it is convenient to re-write the
equation of acceleration using explicitly the expansion factor Θ, which is called
the Raychaudhuri equation:

θ̇ +
1

3
θ2 =

1

2
(ρ+ 3p) (H.25)

Thus besides condition (H.24) for the existence of an acceleration a bounce needs
further restrictions on a(t). Indeed, the existence of a minimum (or a maximum)
for the scale factor implies that at the bouncing point B the inequality (ρB +
3pB) < 0 (or, respectively, (ρB + 3pB) > 0) must be satisfied. Note that at
any extremum (maximum or minimum) of the scale factor the density of energy
vanishes. This is a direct consequence of the first integral of Friedman equation
which, in the Euclidean case, reduces to equation (H.21).

H.5. Duality on the Magnetic Universe as a

consequence of the inverse symmetry

The cosmological scenario that is presented here deals with a cyclic FRW geom-
etry which has a symmetric behavior for small and big values of the scale factor.
This scenario is possible because the behavior of its energy content at high en-
ergy is the same as it has in its weak regime. This is precisely the case of the
magnetic universe that we are dealing with here. To obtain a perfect symmetric
configuration for our model we will impose a new dynamical principle:

• The inverse symmetry principle:

The NLED theory should be invariant under the inverse map

F → F̃ =
4µ2

F
.
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This restricts the number of free parameters from three to two, once a direct
application of this principle implies that β2 = 16α2µ4. This symmetry induces
a corresponding one for the geometry. Indeed, the cosmological dynamics is
invariant under the associated dual map

a(t)→ ã(t) =
H0√
µ

1

a
(H.26)

It is precisely this invariance that is at the origin of the cyclic property of this
cosmological scenario.
Let us point out that the above map is a conformal transformation. Indeed,

in conformal time, the geometry takes the form

ds2 = a(η)2
(
dη2 − dr2 − r2dΩ2

)
. (H.27)

Thus making the conformal map

g̃µν = Ω2 gµν

where Ω = λ/a2, and λ ≡ H0/
√
µ. Note that although the Lagrangian LT is not

invariant under a conformal transformation, the average procedure used to make
compatible the dynamical system of the electomagnetic field and the Friedman
equation is invariant. Indeed, we have

F̃ = g̃µν g̃αβ FαµFβν =
4µ2

F
.

H.6. A complete scenario

There is no doubt that electromagnetic radiation described by a maxwellian
distribution has driven the cosmic geometry for a period. Now we would like
to analyze the modifications introduced by the non linear terms in the cosmic
scenario. The simplest way to do this is to combine the previous lagrangian
with the dependence of the magnetic field on the scale factor. We set

LT = α2 F 2 − 1

4
F − µ2

F
+
β2

F 2
(H.28)

where β is related to the other parameters α and µ by the inverse symmetry
principle, as displayed above.

H.7. Potential

It will be more direct to examine the effects of the magnetic universe controlled
by the above lagrangian if we undertake a qualitative analysis using an analogy
with classical mechanics. Friedman’s equation reduces to the set
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ȧ2 + V (a) = 0 (H.29)

where

V (a) =
A

a6
− B

a2
− Ca6 +Da10 (H.30)

is a potential that restricts the motion of the localization a(t) of the “particle”.
The constants in V are given by

A =
4α2H4

0

3
, B =

H2
0

6
, C =

µ2

6H2
0

, D =
4α2µ4

3H4
0

,

and are positive.
We can then synthesize the properties of the magnetic universe the dynamics

of which is given by LT . We recognize that the dependence of the field as H =
H0/a

2 implies the existence of four distinct epochs, which we will analyze now.
The derivative dL/dF has three zeros in points a, b, c. In these points ρ + p

vanishes. In the case of pure magnetic universe the value of F is always positive.
We distinguish the following eras:

H.8. The four eras of the Magnetic Universe

The dynamics of the universe with matter density given by Eqn.(H.39) can be
obtained qualitatively from the analysis of Einstein’s equations We distinguish
four distinct periods according to the dominance of each term of the energy
density. The early regime (driven by the F 2 term); the radiation era (where
the equation of state p = 1/3ρ controls the expansion); the third accelerated
evolution (where the 1/F term is the most important one) and finally the last
era where the 1/F 2 dominates and in which the expansion stops, the universe
re-bounces and enters in a collapse era.

H.9. Bouncing era

In the strong field limit the value of the scalar of curvature is small and the
volume of the universe attains its minimum, the density of energy and the
pressure are dominated by the terms coming from the quadratic lagrangian F 2

and is approximated by the forms

ρ ≈ H2

2
(1− 8α2H2)

p ≈ H2

6
(1− 40α2H2) (H.31)

Using the dependence H = Ho/a
2, leads to

ȧ2 =
kH2

o

6 a2

(
1− 8α2H2

o

a4

)
− ǫ. (H.32)
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We remind the reader that we limit our analysis here to the Euclidean section
(ǫ = 0). As long as the right-hand side of equation (H.32) must not be negative it
follows that, the scale-factor a(t) cannot be arbitrarily small. Indeed, a solution
of (H.32) is given as

a2 = Ho

√
2

3
(t2 + 12α2). (H.33)

The linear case can be achieved by setting α = 0. The average strength of the
magnetic field H evolves in time as

H2 =
3

2

1

t2 + 12α2
. (H.34)

Note that at t = 0 the radius of the universe attains a minimum value at the
bounce:

a2B = Ho

√
8α2. (H.35)

Therefore, the actual value of aB depends on Ho, which - for given α, µ turns
out to be the sole free parameter of the model. The energy density ρ reaches
its maximum for the value ρB = 1/64α2 at the instant t = tB, where

tB =
√
12α2. (H.36)

For smaller values of t the energy density decreases, vanishing at t = 0, while
the pressure becomes negative. Only for very small times t <

√
4α2/k the

non-linear effects are relevant for cosmological solution of the normalized scale-
factor. Indeed, solution (H.33) fits the standard expression of the Maxwell case
at the limit of large times.

H.10. Radiation era

The standard, Maxwellian term dominates in the intermediary regime. Due to
the dependence on a−2 of the field, this phase is defined by H2 >> H4 yielding
the approximation

ρ ≈ H2

2

p ≈ H2

6
(H.37)

This is the phase dominated by the linear regime of the electromagnetic field.
Its properties are the same as described in the standard cosmological model.
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H.11. The accelerated era: weak field drives the

cosmological geometry

When the universe becomes larger, negative powers of F dominates and the
distribution of energy becomes typical of an accelerated universe, that is:

ρ ≈ 1

2

µ8

H2

p ≈ −7
6

µ8

H2
(H.38)

In the intermediate regime between the radiation and the acceleration regime
the energy content is described by the combined form

ρ =
H2

2
+
µ2

2

1

H2
,

or, in terms of the scale factor,

ρ =
H2

0

2

1

a4
+

µ2

2H2
0

a4. (H.39)

For small a it is the ordinary radiation term that dominates. The 1/F term
takes over only after a =

√
H0/µ, and would grows without bound afterwards.

In fact, the curvature scalar is

R = T µµ = ρ− 3p =
4µ2

H2
0

a4,

showing that one could expect a curvature singularity in the future of the uni-
verse for which a → ∞. We shall see, however that the presence of the term
1/F 2 changes this behavior.
Using this matter density in Eqn.(H.22) gives

3
ä

a
+
H2

0

2

1

a4
− 3

2

µ8

H2
0

a4 = 0.

To get a regime of accelerated expansion, we must have

H2
0

a4
− 3

µ8

H2
0

a4 < 0,

which implies that the universe will accelerate for a > ac, with

ac =

(
H4

0

3µ8

)1/8

.
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H.12. Re-Bouncing

For very big values of the scale factor the density of energy can be approximated
by

ρ ≈ µ2

F
− β2

F 2
(H.40)

and we pass from an accelerated regime to a phase in which the acceleration is
negative. When the field attains the value FRB = 16α2µ2 the universe changes
its expansion to a collapse. The scale factor attains its maximum value

a4max ≈
H2

0

8α2µ2
.

H.13. Positivity of the density of energy

The total density of energy of the tetraktys universe is always positive definite
(see equation H.21). In the bouncing and in the re-bouncing eras it takes the
value ρB = ρRB = 0. At these points the density is an extremum. Actually, both
points are minimum of the density. This is a direct consequence of equations
(H.12) and (H.21). Indeed, derivative of (H.12) at the bouncing and at the
re-bouncing yields

ρ̈B =
3

2
p2B > 0.

Thus there must exists another extremum of ρ which should be a maximum.
This is indeed the case since there exists a value on the domain of the evolution
of the universe between the two minima such that

ρc + pc = 0.

At this point we have

ρ̈+ ṗc θc = 0

showing that at this point c the density takes its maximum value.

H.14. The behavior of the scale factor

Let us pause for a while and describe the form of the scale factor as function of
time in the four regimes. To simplify such description let us separate in three
parts:

Phase A: Bouncing-Radiation

Phase B: Radiation-Acceleration
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Phase C: Acceleration-Rebouncing

characterized respectivelly by the dynamics controlled by: LA = L1+L2;LB =
L2 + L3;LC = L3 + L4. It is straightforward to obtain an analytical expression
for each one of these periods. We obtain for phase A :

a(t)BR =
√
H0

(
2

3
t2 + 12α2

) 1
4

(H.41)

The inverse symmetric phase C is given by

a(t)AR = Constant

(
(t− tc)2 +

8α2µ4H2
0

µ2

)− 1
4

(H.42)

For the case of phase B it is convenient to use an auxiliary coordinate Ψ and
write A specific form is provided by

t =

√
3

2
√
µ
F (arcosΨ,

√
2

2
)

Ψ =
1− na4
1 + na4

(H.43)

where n ≡ µ/H2
0 , and F is a first kind elliptic function.

H.15. Some general comments

Although we have analyzed a simplified toy model it displays many regular
properties that should be worth of further investigation. In particular, it pro-
vides a spatially homogeneous and isotropic FRW geometry which has no Big
Bang and no Big Rip. It describes correctly the radiation era and allows for an
accelerated phase without introducing any extra source.
The particular form of NLED described here is based on a new principle that

states an intimate relation between strong and weak field configurations. This
inverse-symmetry principle reduces the number of arbitrary parameters of the
theory and allows for the regular properties of the cosmical model. The universe
is a cyclic one, having its main characteristics synthesized in the following steps:

• Step 1: The universe contains a collapsing phase in which the scalar factor
attains a minimum value aB(t);

• Step 2: after the bouncing the universe expands with ä < 0;

• Step 3: when the 1/F factor dominates the universe enters an accelerated
regime;
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• Step 4: when 1/F 2 dominates the acceleration changes the sign and starts
a phase in which ä < 0 once more, the scale factor attains a maximum
and re-bounces starting a new collapsing phase;

• Step 5: the universe repeats the same behavior passing steps 1, 2, 3 and
4 again and again, indefinitely.

The particular form of the dynamics of the magnetic field is dictated by the
inverse principle, which states that the behavior of the field is invariant under
the mapping F → F̃ = 4µ2

F
. This reflects on the symmetric behavior of the

geometry by the dual map a→ ã = constant
a

.
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