On the magnetic field screening

S. Campion, S.S. Xue, J. A. Rueda & R. Ruffini,

ICRANet Pescara,
University of Rome "La Sapienza"

4th Zeldovich Meeting 2020

8th September 2020
Inner engine model for BdHNe

In GRB the model of **BdHNe** (Binary Driven HyperNovae) is a binary system: a NS and a CO\text{core} \rightarrow SN explosion (\nu NS)+BH, with \(P \approx 5 \) min.

In the "**Inner-engine**" model (R.Ruffini et al., 2018) strong electric field occurs around a stationary axisymmetric Kerr-BH placed in an uniform magnetic field \(B_0 \).

Assumptions of the model :
- \(B_0 \) originates from: toroidal field of the \nu NS or fossil field of the original NS\Rightarrow BH;
- magnetic field and spin of the BH are parallel.

We consider a series of **impulsive emissions** (R.Ruffini et al., 2019), originated from the discharge of an induced Electric field (\(J \) angular momentum; \(r_+ \) horizon radius)

\[
E_r = - \frac{B(t)J}{2M^2} \frac{r_+^2}{r^2} \Rightarrow E_r \approx \frac{J}{2M^2} \frac{c^2}{2 \gamma} B(t) = \frac{1}{2} \gamma B(t) \text{ (near the horizon)}
\]

GRB 130427A parameters : \(\gamma = \frac{J}{M^2} = 0.3M, \ M = 2.28M_\odot \)

In our configuration \(\vec{E} = E \hat{y} \) and \(\vec{B} = B \hat{z} \).
Accelerated e^-/e^+ pairs, due to the electric field, emit synchrotron photons (MeV-GeV-TeV-PeV), depending on the emission angle;

- The synchrotron photons interact with the magnetic field B_0 mean the Magnetic pair production process (MPP): $\gamma + B \rightarrow e^- + e^+$;
- The pairs continue to emit photons while circularize around the magnetic field creating an induced magnetic field, B_{ind}, opposite to the background one $B_{tot}(t) = B_0 - B_{ind}(t)$ decreases with time, reducing B.

The induced magnetic field is given by

$$\frac{dB_{z,ind}(t)}{dt} = e \frac{\sqrt{p_x^2(t) + p_y^2(t)}}{R_c(t)^2} \frac{dN_+}{dt},$$

(inspired by the Biot-Savart law) with the curvature radius:

$$R_c(t) = \frac{\gamma_e(t) m_e c^2}{e} \left[\left(\vec{E}(t) + \vec{\beta}(t) \times \vec{B}(t) \right)^2 - \left(\vec{\beta}(t) \cdot \vec{E}(t) \right)^2 \right]^{-\frac{1}{2}}.$$

The aim of this study is to decrease the background magnetic field in order to have the right conditions for the transparency of synchrotron MeV and GeV photons.
Accelerated e^-/e^+ pairs, due to the electric field, emit synchrotron photons (MeV-GeV-TeV-PeV), depending on the emission angle;

The synchrotron photons interact with the magnetic field B_0 mean the Magnetic pair production process (MPP): $\gamma + B \rightarrow e^- + e^+$;

The pairs continue to emit photons while circularize around the magnetic field creating an induced magnetic field, B_{ind}, opposite to the background one.

\[B_{tot}(t) = B_0 - B_{ind}(t) \] decreases with time, reducing B.

The induced magnetic field is given by

\[\frac{dB_{z,ind}(t)}{dt} = e \frac{\sqrt{\beta_x^2(t) + \beta_y^2(t)}}{R_c(t)^2} \frac{dN_+(t)}{dt} \]

(inspired by the Biot-Savart law) with the curvature radius:

\[R_c(t) = \frac{\gamma_e(t) m_e c^2}{e} \left[\left(\vec{E}(t) + \vec{\beta}(t) \times \vec{B}(t) \right)^2 - (\vec{\beta}(t) \cdot \vec{E}(t))^2 \right]^{-\frac{1}{2}} \]

The aim of this study is to decrease the background magnetic field in order to have the right conditions for the transparency of synchrotron MeV and GeV photons.
Accelerated e^-/e^+ pairs, due to the electric field, emit synchrotron photons (MeV-GeV-TeV-PeV), depending on the emission angle;

The synchrotron photons interact with the magnetic field B_0 meaning the Magnetic pair production process (MPP): $\gamma + B \rightarrow e^- + e^+$;

The pairs continue to emit photons while circularize around the magnetic field creating an induced magnetic field, B_{ind}, opposite to the background one

$B_{tot}(t) = B_0 - B_{ind}(t)$ decreases with time, reducing B.

The induced magnetic field is given by

$$\frac{dB_{z,ind}(t)}{dt} = e \frac{\sqrt{\beta_x^2(t) + \beta_y^2(t)}}{R_c(t)^2} \frac{dN_+(t)}{dt} \cdot \vec{E}$$

(inspired by the Biot-Savart law) with the curvature radius:

$$R_c(t) = \gamma_e(t) \frac{m_e c^2}{e} \left[\left(\vec{E}(t) + \vec{\beta}(t) \times \vec{B}(t) \right)^2 - (\vec{\beta}(t) \cdot \vec{E}(t))^2 \right]^{-\frac{1}{2}}$$

The aim of this study is to decrease the background magnetic field in order to have the right conditions for the transparency of synchrotron MeV and GeV photons.
Accelerated e^-/e^+ pairs, due to the electric field, emit synchrotron photons (MeV-GeV-TeV-PeV), depending on the emission angle;

The synchrotron photons interact with the magnetic field B_0 mean the **Magnetic pair production process** (MPP): $\gamma + B \rightarrow e^- + e^+$;

The pairs continue to emit photons while circularize around the magnetic field creating an **induced magnetic field**, B_{ind}, opposite to the background one $B_{tot}(t) = B_0 - B_{ind}(t)$ decreases with time, reducing B.

The induced magnetic field is given by

$$\frac{dB_{z,ind}(t)}{dt} = e \sqrt{\frac{\beta_x^2(t) + \beta_y^2(t)}{R_c(t)^2}} \frac{dN_+(t)}{dt}$$

(inspired by the **Biot-Savart law**) with the curvature radius:

$$R_c(t) = \frac{\gamma_e(t) m_e c^2}{e} \left[\left(\vec{E}(t) + \vec{\beta}(t) \times \vec{B}(t) \right)^2 - \left(\vec{\beta}(t) \cdot \vec{E}(t) \right)^2 \right]^{-\frac{1}{2}}$$

The aim of this study is to decrease the background magnetic field in order to have the right conditions for the transparency of synchrotron MeV and GeV photons.
Accelerated e^-/e^+ pairs, due to the electric field, emit synchrotron photons (MeV-GeV-TeV-PeV), depending on the emission angle;

The synchrotron photons interact with the magnetic field B_0 mean the Magnetic pair production process (MPP): $\gamma + B \rightarrow e^- + e^+$;

The pairs continue to emit photons while circularize around the magnetic field creating an induced magnetic field, B_{ind}, opposite to the background one

$$B_{tot}(t) = B_0 - B_{ind}(t)$$ decreases with time, reducing B.

The induced magnetic field is given by

$$\frac{dB_{z,ind}(t)}{dt} = e \frac{\sqrt{\beta_x^2(t) + \beta_y^2(t)}}{R_c(t)^2} \frac{dN_\pm(t)}{dt} \hat{z}$$

(inspired by the Biot-Savart law) with the curvature radius:

$$R_c(t) = \frac{\gamma e(t) m_e c^2}{e} \left[\left(\vec{E}(t) + \vec{\beta}(t) \times \vec{B}(t) \right)^2 - \left(\vec{\beta}(t) \cdot \vec{E}(t) \right)^2 \right]^{-\frac{1}{2}}$$

The aim of this study is to decrease the background magnetic field in order to have the right conditions for the transparency of synchrotron MeV and GeV photons.
Equations of the system

\[
\begin{align*}
\frac{dr^2}{dt} &= c\beta(t), \\
\frac{d\beta}{dt} &= \frac{e}{mc\gamma(t)} \left[\vec{E}(t) + \beta(t) \times \vec{B}(t) - \beta(t) (\vec{E}(t) \cdot \beta(t)) \right], \\
\frac{d\gamma}{dt} &= \frac{e}{mc} \left(\vec{E}(t) \cdot \beta(t) \right) - \frac{l(t)}{mc^2}, \\
\frac{dN}{dt} &= N(t) \frac{l(t)}{\epsilon(t)} \\
\frac{dN_{\pm}}{dt} &= N_{\gamma}(t) \zeta(t) \\
\frac{dB_z}{dt} &= -\frac{dB_{z,\text{ind}}}{dt}
\end{align*}
\]

(1)

The energy loss is given by (see Kelner et al., 2015):

\[I(t) \equiv \left| -\frac{dE}{dt} \right| = \frac{e^2 m^2 c^3}{\sqrt{3} \pi h^2} \overline{H}(x),\]

with:

\[
\overline{H}(x) \approx \frac{8\pi \sqrt{3}}{27} x^2 \left[1 + \frac{3}{4} \left(\frac{2x}{\sqrt{3}} \right)^{2/3} \right]^{-2} \left[1 + \frac{0.52 \sqrt{x} (1 + 3 \sqrt{x} - 3.2x)}{1 + 0.3 \sqrt{x} + 17x + 11x^2} \right].
\]

The parameter \(x = \frac{\epsilon_{\gamma}}{2 \epsilon_e} \) (\(\epsilon_{\gamma} = \text{photon energy}; \epsilon_e = e^\pm \text{ energy} \)) identifies the strength of the MPP process (MPP process becomes important for \(x \gtrsim 0.1 \)), where

\[
\epsilon_{\gamma}(t) = \frac{3e\hbar}{2mc} \gamma^2(t) \sqrt{\left(\vec{E}(t) + \beta(t) \times \vec{B}(t) \right)^2 - \left(\beta(t) \cdot \vec{E}(t) \right)^2}.
\]
Pair production rate

The pair production rate in our configuration of the fields is given by (Daugherty & Lerche, 1975):

\[
\zeta = 0.23 \frac{\alpha_f c}{\lambda_c} \frac{B_z}{B_{cr}} \left(1 - \frac{E_y^2}{B_z^2}\right) \frac{\sqrt{\eta_y^2 \left(1 - \frac{E_y^2}{B_z^2}\right) + \left(\eta_x - \frac{E_y}{B_z}\right)^2}}{1 - \frac{E_y}{B_z} \eta_x} \times
\exp \left\{-\frac{8}{3} \frac{m c^2}{\varepsilon_\gamma} \frac{B_{cr}}{B_z} \left[\eta_y^2 \left(1 - \frac{E_y^2}{B_z^2}\right) + \left(\eta_x - \frac{E_y}{B_z}\right)^2\right]^{-1/2}\right\}.
\]

(3)

This formula is valid until the following condition is satisfied

\[
\Psi = \frac{3}{4} \frac{e \hbar}{m c} \frac{B_z^2}{B_{cr}} \gamma^2 \sqrt{\beta_y^2 \left(1 - \frac{E_y^2}{B_z^2}\right) + \left(\frac{E_y}{B_z} - \beta_x\right)^2} \sqrt{\eta_y^2 \left(1 - \frac{E_y^2}{B_z^2}\right) + \left(\eta_x - \frac{E_y}{B_z}\right)^2} \ll 1.
\]

This condition for \(\Psi\) imposes the values for the set of initial conditions \((\beta_0, \gamma_0, B_0)\) to use.
Normalization

We adopt the following normalization for the variables:

\[\tilde{t} = \frac{t}{\tau_c} \text{ with } \tau_c = \frac{\hbar}{m_e c^2} = 1.3 \times 10^{-21} \text{ sec} \]

\[\tilde{B} = \frac{B}{B_{cr}} \text{ with } B_{cr} = \frac{m_e^2 c^3}{e\hbar} = 4.414 \times 10^{13} \text{ Gauss} \]

\[\tilde{E} = \frac{E}{E_{cr}} \text{ with } E_{cr} = B_{cr} \]

\[\tilde{R}_c = \frac{R_c}{\lambda_c} \text{ with } \lambda_c = \frac{\hbar}{m_e c} = 3.862 \times 10^{-11} \text{ cm} \]

\[\tilde{\varepsilon}_\gamma = \frac{\varepsilon_\gamma}{m_e c^2} \text{ with } m_e c^2 = 0.511 \text{ MeV} \]

\[\tilde{\zeta} = \zeta \times \tau_c. \]

In the *Generic* direction: \(\theta = 75^\circ \) (polar angle), \(\phi = 30^\circ \) (azimuthal angle)
Results- B screening ($N_{±,0} = 10^{10}$)

$B_0 = 0.3B_{cr}$
$\gamma = 1$
$\gamma_0 = 2.27, 2.14$

$B_0 = 0.1B_{cr}$
$\gamma = \frac{1}{5}$
$\gamma_0 = 4.18, 3.71, 22.66$
Results- B screening

\[B_0 = 0.1 B_{cr} \]
\[\gamma = \frac{1}{50} \]
\[\gamma_0 = 3.81, 3.71 \]
\[N_{\pm,0} = 10^{10} \]

\[B_0 = 0.1 B_{cr} \]
\[\gamma_0 = 6.48, 4.18, 3.81 \]
\[N_{\pm,0} = 10^{15} \]
Results

- Graph showing $\varepsilon_{\gamma}(t)$, (MeV) vs. Log(t), (s)
 - Gen, Y, Z

- Graph showing Log($N_{\gamma}(t)$) vs. Log(t), (s)
 - $N_{\gamma,0}=10^3$, $N_{\gamma,0}=10^6$, $N_{\gamma,0}=10^{10}$

- Graph showing Log($\zeta(t)$), (s$^{-1}$) vs. Log(t), (s)
 - $N_{\pm,0}=10^3$, $N_{\pm,0}=10^6$, $N_{\pm,0}=10^{10}$, $N_{\pm,0}=10^{15}$, $N_{\pm,0}=10^{18}$
Summary and Conclusions

We have built a set of one-particle equations to describe the screening of strong and crossed magnetic ($\vec{B} = B\hat{z}$) and electric ($\vec{E} = E\hat{y}$) field;

The fields screening occurs when a huge number of particles ($N_{\pm,0} \geq 10^{10}$) is inserted in the system;

The screening depends by
- the BH spin \(\Upsilon \) (its efficiency decreases if \(\Upsilon \) decreases);
- initial direction of the emission (less efficiency for emission in the z-direction);
- initial number of particles (inefficient for $N_{\pm,0} < 10^{10}$);
- photons energy.

The photon energy presents an oscillatory behaviour due to the motion of the particles and the transformation between energy gain and energy lost;

The low value of the rate $\zeta(t)$ (and than of the efficiency of the screening) is due to the low values of photons energy ($\sim\text{MeV}$). Higher photons energy leads to a stronger MPP rate ($\varepsilon_\gamma \sim\text{GeV}$).
Study of the case with higher photons energy \((\varepsilon_{\gamma} \sim \text{GeV, TeV})\), consistently with the condition \(\Psi \ll 1\);

Study of the MPP rate \(\zeta(t)\) for any value of \(\Psi\);

Study the pair production and the screening effect for the configuration with \(\vec{E} \times \vec{B} = 0\) \((\vec{E} \parallel \vec{B})\) and \(\vec{E} \cdot \vec{B} \neq 0\).
Thanks for the attention
Other results
Other results