Exploring Powerful Extragalactic Particle Accelerators with X-rays, Gamma-rays and Neutrinos

Felix Aharonian
DIAS/Dublin & MPIK/Heidelberg

2nd Gallileo-XuGuangqi Meeting, 12-17 July 2010, Ventimiglia/Italy
thee components of Cosmic Rays

✓ below knee around $10^{15}$ eV

Galactic

✓ above ankle around $10^{18}$ eV

ExtraGalactic

✓ between knee and ankle

???

AUGER collaboration confirms the existence of a spectral break/cutoff around $10^{20}$ eV! is this the so-called GZK cutoff expected for the sources located beyond 100 Mpc?

not necessarily - there is another fundamental reason to expect a cutoff around $10^{20}$eV because of limited efficiency for particle acceleration in available astronomical objects.
suspected sites of acceleration of 10^{20} eV CRs based on the condition: size > Larmor radius:

\[(R/1\text{pc}) \times (B/1\text{G}) > 0.1(E/10^{20} \text{ eV})\]
size > Larmor radius:

\[(R/1\text{pc}) \times (B/1\text{G}) > 0.1(E/10^{20}\text{ eV})\]

a necessary but not sufficient condition: it implies

(1) minimum acceleration time \(t_{\text{acc}} = R_L/c = E/eBc\) and
(2) no energy losses

★ the acceleration in fact is slower: \(t_{\text{acc}} = (1-10)\eta R_L/c (c/v)^2\)
with \(\eta > 1\) and shock/bulk-motion speed \(v < c\) (\(\eta = 1\) - Bohm diffusion)

for this reason galaxy clusters cannot accelerate particles beyond \(10^{19}\) eV

★ energy losses due to the proton synchrotron or curvature radiation in compact objects become severe limiting factor

even so, the AGN jets and GRBs are the most likely sources responsible for acceleration of \(10^{20}\) eV protons and nuclei
Particle acceleration in Galaxy Clusters

all ingredients for effective acceleration of cosmic rays

✓ formation of strong accretion shocks
✓ magnetic field of order 0.1–1 μG
✓ shock velocity – few 1000 km/s
✓ acceleration time ~ Hubble time

but protons cannot be accelerated to $10^{20}$ eV
pair production losses shape the proton spectrum around the cut-off:
- small bump,
- non-exponential cut-off

**Fig. 1.** Acceleration and energy loss time scales as a function of the proton energy. The acceleration time scales are obtained for the values of the upstream magnetic field $B_1$ reported in figure and a downstream magnetic field $B_2 = 4B_1$. The thick lines correspond to a shock velocity of 2000 km/s, the thin lines to a velocity of 3000 km/s. As an horizontal dotted line we report the estimated age of the Universe, for comparison.

**Fig. 2.** Proton spectra at the shock location for an acceleration time of 10 Gyr (solid line) and 5 Gyr (dashed) for a shock velocity of 2000 km/s, a magnetic field upstream $B_1 = 0.3 \mu G$ and a magnetic field downstream $B_1 = 4B_1$. 

Vannoni et al 2009
Self-consistent calculation: broader and less steep cut-off than exponential

**Synchrotron:** ~factor 10 enhancement downstream due to higher $B$; peak energy $\sim$100 keV.

**Inverse Compton:** the same emission level up and downstream peak between 10 and 100 TeV but the intergalactic photon-photon absorption strongly reduces gamma-ray flux above 10 TeV.

$W_p = 10^{62}$ erg in the case of non-linear shocks $\Rightarrow$ 100% effective synchrotron source for $d = 100$ Mpc

$f_E = 10^{-12}$ erg/cm$^2$ s detectable by ASTRO-H at hard X-rays CTA at TeV gamma-rays

Broadband SED induced by UHE protons
acceleration sites of $10^{20}$ eV CRs

$$t_{\text{acc}} = \frac{1}{c\eta} \frac{R_L}{1}$$

signatures of extreme accelerators?

✓ synchrotron self-regulated cutoff:

$$h\nu_{\text{cut}} = \frac{3}{4} \alpha^{-1} \frac{1}{mc^2} \eta$$

$\approx 300 \text{GeV}$ proton synchrotron

$\approx 150 \text{MeV}$ electron synchrotron

✓ neutrinos (through “converter” mechanism)

production of neutrons (through p interactions)

which travel without losses and at large distances convert again to protons $\Rightarrow{^2}\text{ energy gain}$!

Derishev, FA et al. 2003, Phys Rev D 68 043003

✓ observable off-axis radiation

radiation pattern can be much broader than 1/

acceleration sites of $10^{20}$ eV CRs

$$t_{\text{acc}} = \frac{R_L}{c} \eta^{-1}$$

signatures of extreme accelerators?

✓ synchrotron self-regulated cutoff:

$$h\nu_{\text{cut}} = \frac{9}{4} \alpha_f^{-1} mc^2 \eta :$$

$\simeq 300\text{GeV}$ proton synchrotron

$\simeq 150\text{MeV}$ electron synchrotron

compact/magnetized objects!

✓ neutrinos (through “converter” mechanism) production of neutrons (through p interactions) which travel without losses and at large distances convert again to protons $\Rightarrow 2$ energy gain!

Derishev, FA et al. 2003, Phys Rev D 68 043003

✓ observable off-axis radiation radiation pattern can be much broader than 1/

two examples:

- multi-kpc scale structures in AGN jets
- sub-parsec jets of TeV blazars
acceleration and radiation of UHE protons in kpc-scale structures of AGN jets

\[(R/1\text{kpc}) \times (B/100\mu\text{G}) > 1(E/10^{20} \text{ eV}) : \text{protons can be accelerated to } 10^{20} \text{ eV e.g. by relativistic shocks}\]
acceleration/radiation of $>10^{19}$ eV protons in sub-parsec AGN jets

synchrotron radiation of protons: a viable radiation mechanism

$$E_{\text{cut}} = 90 \left( B/100 \text{G} \right) \left( E_p/10^{19} \text{ eV} \right)^2 \text{ GeV}$$

$$t_{\text{synch}} = 4.5 \times 10^4 \left( B/100 \text{G} \right)^{-2} \left( E/10^{19} \text{ eV} \right)^{-1} \text{ s}$$

$$t_{\text{acc}} = 1.1 \times 10^4 \left( E/10^{19} \right) \left( B/100 \text{G} \right)^{-1} \text{ s}$$

$$E_{\text{max}} = 300 \eta^{-1} \delta \text{ GeV}$$

requires extreme accelerators: $\eta \sim 1$
internal absorption can help to make very hard spectra, but B-field should be large to avoid the cascadeing in the radiation field.
because of interstellar and intergalactic magnetic fields, the information about the original directions of cosmic rays pointing to their production sites is lost.

the flux of cosmic rays is contributed, most likely, by a large number of galactic and extragalactic sources; these objects represent different source populations characterized by essentially different physical parameters – age, distance, energy budget, etc., as well as by different particle acceleration scenarios.

=> extremely difficult the identification of sources of the isotropic flux of cosmic rays based on two measurables - the chemical composition and energy spectra of particles - characterizing the “soup” cooked over cosmological timescales.

but .... at extremely high energies, \( E \sim 10^{20} \text{ eV} \), the impact of galactic and extragalactic magnetic fields on the propagation of cosmic rays becomes less dramatic, which might result in large and small scale anisotropies of CR flux depending on the strength and structure of the (highly unknown) intergalactic magnetic field, the highest energy domain of CRs may offer us a new astronomical discipline - “cosmic ray astronomy”, provided that \( B_{IGM} < 10^{-9} \text{ G} \).
$10^{20}$ eV - a special energy

extension of studies to energies $10^{20}$eV and beyond enhances chances of localization of particle accelerators for three independent reasons:

• with an increase of energy, the probability that a proton of $10^{20}$eV would penetrate through IGM without significant deflections in chaotic magnetic fields increases; for IGMF $\ll 10^{-9}$G, the deflection angle can be quite small also for lower energies, but $10^{20}$ eV is a special energy because

• deflection of protons with energy less than $10^{20}$ eV in galactic magnetic fields exceeds 1 degree (angular resolution of UHE cosmic ray detectors)

• particles of such high energies can arrive only from relatively nearby accelerators located within 100 Mpc. this dramatically (by orders of magnitude) decreases the number of relevant sources of $\geq 10^{20}$eV protons contributing to the observed cosmic ray flux, and correspondingly reduces the level of the diffuse background, i.e. the (quasi) isotropic flux due to superposition of contributions by unresolved discrete sources.
astronomy with protons?

J. Cronin
Carriers of information about Nature's Particle Accelerators

Neutral/stable secondary products of EM and hadronic interactions of electrons, protons and nuclei with plasma, radiation and B-fields

Photons and neutrinos

Cosmic Accelerator

γ-rays - produced in hadronic and E-M interactions
ν_µ , ν_e - produced only in hadronic interactions
Angular, spectral, and time distributions of highest energy protons and associated secondary gamma-rays and neutrinos propagating through extragalactic magnetic and radiation fields

F.A. Aharonian, S.R. Kelner, and A.Y. Prosekin
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

(Dated: June 8, 2010)

The angular, spectral and temporal features of the highest energy protons and accompanying them secondary neutrinos and synchrotron gamma-rays propagating through the intergalactic magnetic and radiation fields are studied using the analytical solutions of the Boltzmann transport equation obtained in the limit of the small-angle and continuous-energy-loss approximation.

PACS numbers: 96.50.sb, 13.85.Tp, 98.70.Sa, 98.70.Rz

I. INTRODUCTION

Because of deflections in the interstellar and intergalactic magnetic fields, the information about the original protons ($\theta \propto B/E$). However at energies significantly below $10^{20}$ eV, the deflection in galactic magnetic fields becomes the dominant factor leading to the lost of information about the original directions of particles (see, e.g., Ref. [1]).
mean free path of protons in IGM due to interactions with CMBR at $z \ll 1$

mean deflection angle of protons for the fixed final (observed) energy $E_f$ for IGM $B=1$ nG. Numbers at curves are energies of protons at the distance $r$ from the observer.
energy spectra of protons within different solid angles

\[ \frac{dN}{dE} = AE^{-\alpha} \exp\left(-\frac{E}{E_0}\right) \]

with \( \alpha = 2 \), \( E_0 = 3 \times 10^{20} \) eV; \( L_p = 10^{44} \) erg/s; \( B = 1 \) nG
for $B$ between $10^{-9}$ to $10^{-7}$ G electrons are produced within 10 Mpc and radiate predominantly through synchrotron radiation before any significant deflection.

**FIG. 4:** Energy loss rates of electrons due to inverse Compton scattering on CMBR photons (solid line) and synchrotron radiation in random magnetic field for $B = 1$ nG, 10 nG, and 100 nG. For electrons of energy $E \gtrsim 10^{19}$ eV the inverse Compton scattering on the radiowaves of CRB becomes comparable or even can exceed the contribution of the Compton scattering on CMBR, however for IGMF $B \gtrsim 1$ nG the synchrotron radiation remains the main cooling channel.

**FIG. 5:** Number of electrons of energy $E_e$ located inside a sphere of the radius $r$. 
distributions of secondary photons, electrons, neutrinos from photomeson interactions
secondary electrons

B-H pairs

“photomeson electrons”

Kelner&FA 2008
energy spectra of synchrotron radiation of secondary (pion-decay) electrons within different angles

\[ dN/dE = AE^{-\alpha} \exp\left(-E/E_0\right) \]

with \( \alpha = 2 \), \( L_p = 10^{44} \) erg/s; \( B = 1 \text{nG} \)
energy spectra of synchrotron radiation of secondary (pion-decay) electrons within different angles

dN/dE = AE^{-\alpha} \exp(-E/E_0) \text{ with } \alpha=2, E_0=3\times10^{20} \text{ eV; } L_p=10^{44} \text{ erg/s}
neutrinos

\[ dN/dE = AE^{-\alpha} \exp(-E/E_0) \]

with \( \alpha = 2 \), \( L_p = 10^{44} \) erg/s; \( B = 1 \) nG
spectral energy distribution of gamma rays, muon neutrinos and protons*

dN/dE=AE^{-\alpha} \exp(-E/E_0) \text{ with } \alpha=2, \ E_0=3\times10^{20} \text{ eV}; \ L_p=10^{44} \text{ erg/s}; \ B=1\text{nG}

* if protons escape the source within a small angle towards the observer $\delta\Omega$ the fluxes are increased by a factor $\delta\Omega/4\pi$
arrival time distribution of protons

A. detection of protons with arbitrary arrival angles;

B. protons arriving along the radius-vector at the registration point

\[ \lg y = \lg \tau - 2 \lg r - \lg \lambda - 2 \lg B + 2 \lg E + \text{const} \]

\[ E = 10^{20} \text{ eV}; \quad L_p = 10^{44} \text{ erg/s}; \quad B = 1 \text{nG}, \quad d = 10 \text{ Mpc} \]